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We propose a new computational method for the valuation of options in jump-diffusion models. The option value function
for European and barrier options satisfies a partial integrodifferential equation (PIDE). This PIDE is commonly integrated
in time by implicit-explicit (IMEX) time discretization schemes, where the differential (diffusion) term is treated implicitly,
while the integral (jump) term is treated explicitly. In particular, the popular IMEX Euler scheme is first-order accurate
in time. Second-order accuracy in time can be achieved by using the IMEX midpoint scheme. In contrast to the above
approaches, we propose a new high-order time discretization scheme for the PIDE based on the extrapolation approach to
the solution of ODEs that also treats the diffusion term implicitly and the jump term explicitly. The scheme is simple to
implement, can be added to any PIDE solver based on the IMEX Euler scheme, and is remarkably fast and accurate. We
demonstrate our approach on the examples of Merton’s and Kou’s jump-diffusion models, the diffusion-extended variance
gamma model, as well as the two-dimensional Duffie-Pan-Singleton model with correlated and contemporaneous jumps
in the stock price and its volatility. By way of example, pricing a one-year double-barrier option in Kou’s jump-diffusion
model, our scheme attains accuracy of 1075 in 72 time steps (in 0.05 seconds). In contrast, it takes the first-order IMEX
Euler scheme more than 1.3 million time steps (in 873 seconds) and the second-order IMEX midpoint scheme 768 time
steps (in 0.49 seconds) to attain the same accuracy. Our scheme is also well suited for Bermudan options. Combining
simplicity of implementation and remarkable gains in computational efficiency, we expect this method to be very attractive
to financial engineering modelers.
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1. Introduction

Since Merton’s (1976) pioneering work, jump-diffusion
processes have become a standard modeling tool in equity,
foreign exchange, fixed income, commodity, and energy
derivatives markets. Jump-diffusion models extend the clas-
sical diffusion modeling framework by adding jumps to
the diffusion dynamics of the state variable. Jump diffu-
sions are capable of modeling large and sudden changes in
the state variable. Jump-diffusion models naturally exhibit
high skewness and leptokurtosis levels typically observed
in financial time series. At the same time, options mar-
kets typically exhibit the so-called implied volatility smile
or skew effects across options with different strike prices.
In the jump-diffusion framework, these are naturally gen-
erated by jumps in the underlying process (e.g., Andersen
and Andreasen 2000; Bates 1996, 2000; Duffie et al. 2000;
Kou 2002).

In Merton’s (1976) model, the asset return follows a
Brownian motion with drift punctuated by jumps arriving
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according to a compound Poisson process with constant
intensity and with normally distributed jump sizes. Due to
normality of the jump-size distribution, Merton was able
to obtain explicit analytical solutions for European call and
put options in this model. Kou (2002) recently proposed a
double exponential jump-diffusion model where jump sizes
are double exponentially distributed. One of the features
of this model is that some path-dependent options, such as
barrier and lookback options, can be priced analytically due
to the memoryless property of the exponential distribution
(Kou and Wang 2003, 2004).

More flexibility to model empirical financial data is ob-
tained when the instantaneous variance of the diffusion
component of the asset return process is allowed to be ran-
dom. Heston (1993) considered a stochastic volatility (SV)
model, where the variance is stochastic and follows the
Cox-Ingersoll-Ross (CIR) square-root process. This model
was extended by Bates (1996) by allowing jumps in the
asset return process (stochastic volatility with jumps (SVJ)
in return) and by Duffie et al. (2000) by allowing jumps
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both in the asset return process and in the variance process
(stochastic volatility with correlated and contemporaneous
jumps in return and variance (SVCJ)). Eraker et al. (2003)
examine the SVCJ model empirically and find strong evi-
dence for jumps both in the asset return and in the vari-
ance processes. Broadie and Kaya (2005) develop efficient
Monte Carlo simulation methods for the SVCJ model.

When the jump-diffusion process is a Lévy process, such
as in Merton’s (1976) and Kou’s (2002) models, or an affine
jump-diffusion process, such as in the SVJ and SVCJ mod-
els based on Heston’s SV model, the characteristic function
of the process can be obtained in closed form and European
options can be priced efficiently by inverting the Fourier
transform by the fast Fourier transform algorithm (FFT)
(Carr and Madan 1999, Duffie et al. 2000). However, this
approach does not apply to path-dependent options such as
barrier options.

For discrete barrier options under Merton’s (1976) jump-
diffusion model, Broadie and Yamamoto (2005) develop
an efficient method based on the fast Gauss transform
(previously introduced to options pricing in Broadie and
Yamamoto 2003). However, their method does not directly
apply to non-Gaussian jump-size distributions. For discrete
barrier options under Lévy processes, Petrella and Kou
(2004) develop a method based on Spitzer’s identity and
Laplace transform and Feng and Linetsky (2007) develop
a method based on the Hilbert transform. However, their
methods do not apply to more general jump-diffusion pro-
cesses not in the Lévy class, and do not apply to continu-
ous barrier options and Bermudan options. Furthermore, if
the process parameters such as volatility, drift, jump inten-
sity, and jump-size distribution are state dependent (such as
in, e.g., Glasserman and Merener 2003), the characteristic
function is not available analytically, and even European
options have to be priced by numerical methods.

The option price (value function) for European and bar-
rier options satisfies a partial integrodifferential equation
(PIDE). This PIDE is commonly integrated in time by the
implicit-explicit (IMEX) Euler time discretization, where
the differential (diffusion) part is treated implicitly, while
the integral (jump) part is treated explicitly. This approach
has been widely applied in the literature (see Andersen and
Andreasen 2000, Carr and Hirsa 2003, Cont and Voltchkova
2005, d’Halluin et al. 2005, Hirsa and Madan 2003, Tavella
and Randall 2000, and Zhang 1997), and is very popu-
lar in practice. The desire to treat the integral (jump) term
in the PIDE explicitly is motivated by the fact that the
fully implicit treatment would necessitate inverting a dense
matrix resulting from discretizing the integral in contrast to
the banded matrix resulting from the spatial discretization
of the diffusion operator (tridiagonal for one-dimensional
diffusions and nine-diagonal for two-dimensional diffu-
sions). However, the fully explicit treatment of the PIDE
(e.g., binomial or trinomial lattices; see Amin 1993) is inef-
ficient due to the stability restriction At < CAx? on the size
of the time step, because prohibitively small time steps are

required to attain higher accuracy goals. The IMEX Euler
scheme avoids both problems. It turns out that the explicit
treatment of the integral term (at least for finite activity
jump processes) does not generate any stability restrictions
(the unconditional stability is proved in d’Halluin et al.
2005) and at the same time avoids inverting dense matri-
ces. This combination of simplicity of implementation and
stability secured the popularity of the IMEX Euler scheme
among financial engineering practitioners.

However, the IMEX Euler scheme is only first-order
accurate in time. This results in slow convergence even
for one-dimensional problems. It is desirable to develop
high-order time-stepping schemes for the jump-diffusion
PIDE. In one dimension, Andersen and Andreasen (2000)
propose a second-order accurate in time, stable operator-
splitting ADI finite-difference scheme based on the appli-
cation of the FFT. However, it is not straightforward to
generalize this method to multidimensional jump-diffusion
processes and processes with state-dependent jump magni-
tude distributions. Also in one dimension, d’Halluin et al.
(2005) develop a fully implicit stable, second-order in time
finite-difference scheme for the PIDE that utilizes Crank-
Nicolson time stepping. Their scheme is more general
than Andersen and Andreasen’s (2000) scheme because
it can be generalized to handle early exercise (d’Halluin
et al. 2004) and exotic features. However, it is more
implementationally involved due to the implicit handling
of the integral term (a fixed-point iterative procedure is
involved in solving the dense system of equations) than
the simple IMEX Euler scheme. Furthermore, extensions to
multidimensional jump-diffusion processes, processes with
state-dependent jump magnitude distributions, and pro-
cesses with discontinuous jump magnitude densities may
not be straightforward. In particular, d’Halluin et al. (2004)
report difficulties with attaining second-order convergence
in space in Kou’s (2002) double-exponential model with
the double-exponential jump magnitude density discontin-
uous at zero (empirically the most relevant case because it
produces skewness in the asset return distribution necessary
to generate the implied volatility skew).

With increasing interest in multidimensional models such
as the SVCJ with jumps both in the stock return and in
the return variance and multiasset models with correlated
jumps, the problem of developing efficient and relatively
easy to implement numerical methods for general multidi-
mensional jump-diffusion models is becoming increasingly
important in financial engineering practice. Unfortunately,
the first-order IMEX Euler scheme is prohibitively slow in
multiple dimensions.

In this paper, we propose a new high-order time dis-
cretization scheme for the PIDE based on the extrapolation
approach to integration of ODEs that treats the diffusion
term implicitly and the jump term explicitly. The scheme
is simple to implement, can be added to any existing PIDE
solver based on the IMEX Euler scheme, and is remark-
ably fast and accurate. We demonstrate our approach on
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the examples of Merton’s (1976) and Kou’s (2002) jump-
diffusion models, the diffusion-extended variance gamma
(DEVG) model, as well as on the two-dimensional SVCJ
model. By way of example, pricing a one-year double-
barrier option in Kou’s jump-diffusion model, our extrap-
olation scheme attains accuracy of 10> in 72 time steps
(in 0.05 seconds). In contrast, it takes the first-order IMEX
Euler scheme more than 1.3 million time steps (in 873
seconds) and the second-order IMEX midpoint scheme
768 time steps (in 0.49 seconds) to attain this accuracy
in the same example. Combining simplicity of implemen-
tation and remarkable gains in computational efficiency,
we expect this scheme to be very attractive to financial
engineers.

This paper is organized as follows. In §2, we briefly
review Merton’s (1976), Kou’s (2002), and SVCJ jump-
diffusion models, and the corresponding PIDE formula-
tions for European and single- and double-barrier options
in these models. In §3, we introduce our spatial discretiza-
tion approach. In this paper, we follow the Galerkin finite-
element approach to discretize the variational (weak) form
of the PIDE. We use the standard finite-element basis in
one and two dimensions that ensures quadratic conver-
gence in space. The result of the spatial discretization is
a system of ordinary differential equations (ODE) to be
integrated numerically. This approach is called the finite-
element method-of-lines (MOL). In §4, we describe an
extrapolation time-stepping scheme based on the IMEX
Euler scheme that treats the (stiff) term in the ODE result-
ing from the differential terms in the original PIDE implic-
itly and the (nonstiff) term in the ODE resulting from the
integral term in the PIDE explicitly. At each time step, the
computation involves matrix-vector multiplication, where
the matrix is Toeplitz for one-dimensional models, and
block Toeplitz with Toeplitz blocks for the two-dimensional
SVCJ model. FFT is used to perform these multiplications
efficiently.

In the literature on numerical methods for stiff ODEs,
extrapolation-based ODE solvers for stiff systems are sur-
veyed by Deuflhard (1985), Deuflhard and Bornemann
(2002, §6.4.2), and Hairer and Wanner (1996, §IV.9). In
computational finance, Richardson extrapolation has been
widely applied in the context of binomial and trinomial
lattice approximations in the pure diffusion Black-Scholes
model (e.g., Broadie and Detemple 1996, Ibanez 2003).
The application of extrapolation we propose here is dif-
ferent, because it involves a time-stepping scheme for the
system of stiff ODEs arising after the spatial discretization
of the PIDE in general jump-diffusion models.

We emphasize that the time-stepping extrapolation
scheme of §4 equally applies to any of the possible spa-
tial discretization approaches, such as finite-difference dis-
cretizations of the PIDE (e.g., Andersen and Andreasen
2000, Cont and Voltchkova 2005, d’Halluin et al. 2005),
finite-difference discretizations of the variational (weak)

formulation of the PIDE (e.g., Zhang 1997), Galerkin finite-
element methods (as in this paper), finite-volume methods,
wavelet Galerkin methods (Matache et al. 2004; 2005a, b;
2006), or spectral methods. Our decision to implement the
finite-element spatial discretization in this study was dic-
tated by simplicity and robustness of handling the integral
term and boundary conditions (we are interested both in
European and barrier options in this paper) in the finite-
element formulation. In particular, we do not observe any
difficulties with Kou’s (2002) double-exponential model
with discontinuous jump-size density in our approach,
and the treatment of the two-dimensional SVCJ model
with bivariate jumps is straightforward as well. Neverthe-
less, the contribution of §4 describing our time-stepping
approach is independent of the choice of spatial discretiza-
tion and should equally apply to other spatial discretization
choices. This is important for financial engineering prac-
tice. The time-stepping approach of §4 can be coupled with
any existing spatial discretization software already in use
in organizations. In §5, we consider further applications
and extensions of our approach, including the pricing of
Bermudan options and extensions to processes with infinite
activity jumps. Section 6 presents extensive computational
tests of our approach and demonstrates remarkable effi-
ciency gains resulting from the extrapolation based on the
IMEX Euler scheme. Section 7 concludes the paper. The
appendix in the online companion contains some results on
Toeplitz matrices and block Toeplitz matrices with Toeplitz
blocks used in our implementation. An electronic compan-
ion to this paper is available as part of the online version
that can be found at http://or.journal.informs.org/.

2. Option Pricing in Jump-Diffusion
Models

2.1. Jump-Diffusion Processes

We take an equivalent martingale measure (EMM) as given
and model the risk-neutral stock price process in the form
S, =KeX:, t >0, where {X,, t > 0} is a jump-diffusion pro-
cess and K > 0 is some reference price level. One typically
sets K =S, the initial stock price at time zero. This cor-
responds to starting the process X, at the origin, X, =0
(X, has the interpretation of the continuously compounded
return process net of dividends). Alternatively, when pric-
ing call and put options, it will be convenient for us to
set K equal to the strike price of the option to be priced.
This corresponds to starting the process X, at X, = x :=
In(S,/K).
In one dimension, we assume that

dX,=udt+odB,+dJ,
p=r—q—0/24+A(1-E[]),

where r > 0 is the risk-free interest rate, g > 0 is the con-
tinuous dividend yield, o > 0 is the stock return volatility,
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{B,, t >0} is a standard Brownian motion, and {J,, t > 0}
is a jump process, a compound Poisson process with inten-
sity A >0 and a given jump-size (magnitude) distribution,
ie., J, = Z:,V‘:IZH, where N, is a Poisson process with
intensity A and {Z,} are independent and identically dis-
tributed (i.i.d.) jump magnitudes. It is also assumed that the
Brownian motion, the Poisson process, and the jump mag-
nitudes are all independent. The drift constant u is adjusted
so that the total gains process, including price changes and
dividends, is a martingale under the EMM, i.e., E[S,] =
er=91S, for each t > 0 for the price process.

In Merton’s (1976) model, the jump magnitude distribu-
tion is normal with mean m and standard deviation s with
the probability density

p(z)= \/%@ip(—(zg—s;n)z)-

In this model, the drift parameter is u =r — q — 0%/2 +
A[l — exp(m + s2/2)]. In Kou’s (2002) model, the jump
magnitude distribution is double exponential with the
density

p(2) =pmie ™ 0 + (1= p)me™ 1y,

and u =r—g—0?/2+A[(1=p)(m+ 1)~ —p(n, —D7'].
In this model, positive jumps occur with probability p and
are exponentially distributed with mean 1/, with n, > 1,
and negative jumps occur with probability 1 — p and are
exponentially distributed with mean 1/m, with n, > 0.
The infinitesimal generator of the Markov jump-diffusion
process X, in one-dimensional jump-diffusion models is

G (x) = Lo f,+ pf+ A / [f(x+2) — F(0)]p(z) dz,

where p(z) is the jump magnitude probability density.

In the one-dimensional model, the volatility o is a
constant. In contrast, in the SVCJ model, the instanta-
neous variance V, = o7 is assumed to follow a CIR dif-
fusion punctuated by positive jumps. The corresponding
two-dimensional stochastic differential equation (SDE) is
(Duffie et al. 2000)

dx,:(u—v,,/z)dt%/x/t,[ /1—pgdB;+deB,2]+dJ,X,
dv,=k(0—V,_)dt+£&\/V,_dB +dJ’,

where 6 is the long-run variance level, k is the rate of mean
reversion, £ is the volatility-of-volatility parameter, B! and
B? are two independent standard Brownian motions, p,, is
the correlation coefficient correlating Brownian shocks in
the return and variance processes, and (JX,J") is a two-
dimensional jump process, a R x R*—valued compound
Poisson process with intensity A > 0 and a bivariate jump
magnitude distribution in R x R*. The process starts at
X, :=x=1In(S,/K) and V; =v > 0 at time zero. The jump

magnitudes (ZX, Z) are i.i.d. with a joint bivariate prob-

ability density p(z*, z"). The marginal distribution of the
jump size in variance is assumed to be exponential with
mean v. Conditional on a jump of size z¥ in the variance
process, the jump size in the return process X, is assumed
to be normally distributed with mean m + p,z” (where
p, defines correlation between jumps in return and vari-
ance) and standard deviation s. The bivariate density is
R ' (F=m—p,")
R

7' eR, " >0.
The drift parameter is
p=r—q+All—(1=vp,)" exp(m+s’/2)].

The infinitesimal generator of the two-dimensional Markov
process (X,, V,) is given by

Gf(x,v)
= 50 e HPEVS o+ 5E 0 o+ (= 50) fo AR (0—0) £,

+’\/m/m[f(x+zx,v+z“)—f(x,v)]p(zx,zv)dzudle
—00 /0

For future convenience, we introduce a scaled and centered
dimensionless variance process Y, = (V, — 6)/6. A jump of
size 6V in V, corresponds to a jump of size 6Y =6V /0
in Y,. Hence, the joint distribution of jumps in the state
variables (X,, ;) has a density

(,2) = 0 bz (F—m—p,02)
N T T W 252 ’

77 eR, 2 20.

The infinitesimal generator of the two-dimensional Markov
process (X,, Y,) is given by

Gf(x,y)

1 2
=500+ Dfec+pE(+ DS+ i—g(y +1)f,,
1
+ <,U« — 500+ 1)>fx —kyf,
“/,:/Ow[f (¥ 425y +2) = f (0 )]p(, ") d2’ dz".

2.2. Option Pricing in Jump-Diffusion Models

Consider a European-style option contract that delivers a
payoff F(S;) at expiration T > 0. The payoff function F is
assumed to depend on the underlying stock price at expi-
ration. The price of the option at time ¢ € [0, T] is given
by its expected discounted payoff, where the expectation is
taken under the EMM:

V(t,x)=e""E, [P (X)],
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where r > 0 is the risk-free interest rate. Here, we substi-
tuted S; = Ke*” and defined the payoff function (X,) =
F(Ke*7) in terms of the variable X; = In(S;/K). The sub-
script in the conditional expectation operator [,  signifies
that at time ¢ the state of the process X is known, X, = x.
For call and put options, we set K equal to the strike
price, and the payoffs are (x* = max{x,0}): ¢ ,(x) =
K(e*—1)* and ¢, (x) = K(1 —e*)*. The value function V
can be characterized as the solution of the following PIDE
(see, e.g., Cont and Tankov 2004):

V,+6V—-rV=0, 1e€l[0,T),

with the terminal (payoff) condition V (T, x) = )(x). For
future convenience, we separate the differential (diffusion)
and integral (jump) components in the infinitesimal gener-
ator 6. We denote the differential part of the operator (with
discounting at the constant rate » + A included in the differ-
ential operator) by s and the integral part by 9. We also
transform the terminal value problem into the initial value
problem (IVP) by defining U(t, x) := V(T — t, x). Then,
we need to solve the following PIDE:
U—-dU—-BU=0, te(0,T],

with the initial condition: U(0, x) = {s(x). For one-dimen-
sional jump-diffusion models, we have

AU =10?U,, +pU, — (r+ MU,

BU(t, x) = )\/R U(t,x+2)p(z)dz.

In this paper, we are also interested in knock-out options.
Generally, a knock-out option contract is canceled (knocked
out) if the underlying state variable exits a prespecified
(open) domain () in the state space. Let 7 be the first exit
time of the underlying process from () (a first passage time
into Q°, the complement of () in the state space). The
knock-out option is then canceled (declared null and void)
at time 7 if 7 < T, where T is the option expiration. Other-
wise, the option holder receives the payoff at expiration. In
some cases, the option holder receives a rebate R(X.) at
time 7 if 7 < T. This rebate can be thought of as the “con-
solation prize” to mitigate the loss of the option contract.
It can be constant or depend on the state of the underlying
process at time 7 (more generally, it can also depend on
time, i.e., the rebate is R(7, X,) if the process exits () at
time 7 and is in state X, € Q¢ at 7, but for simplicity, we
assume that it only depends on the state and is indepen-
dent of time). Note that because we are dealing with jump
diffusions, it is possible that the process will jump right
through the boundary of () and straight into the interior of
Q° (overshoot). Hence, the rebate needs to be specified for
all states in Q°. This is in contrast with pure diffusions,
which, by continuity, always hit the boundary.

In particular, we are interested in six types of knock-out
options: calls and puts with lower barriers, calls and puts

with upper barriers, and calls and puts with both lower and
upper barriers. A down-and-out call (put) delivers a call
(put) payoff at T if the stock does not fall to or below a
lower barrier L, 0 < L < S, prior to and including expira-
tion T. An up-and-out call (put) delivers a call (put) payoff
if the stock does not increase to or above the upper bar-
rier U, S; < U < oo, prior to and including expiration 7.
A double-barrier call (put) delivers a call (put) payoff at
T if the stock does not exit from the interval (L, U) prior
to and including expiration 7. Here, L and U, 0 < L <
Sy < U < oo, are lower and upper barriers. In terms of
the process X, = In(S,/K), the lower and upper barriers
are x =In(L/K) and x =1In(U/K). In terms of the PIDE,
the value function of the knock-out option satisfies the fol-
lowing knock-out condition with rebate: U(t, x) = R(x),
x€Q°, t€]0,T], where Q¢ = (—o0, x], Q° =[X, o), and
QO = (—o0, x]U[X, o0) for down-and-out, up-and-out, and
double-barrier options, respectively. If there is no rebate,
R =0, then the value function vanishes everywhere in Q°.
Note that the knock-out condition has to be imposed every-
where in ()¢ because of the overshoot (the process can jump
from ) to any point in )¢; at the PIDE level, this mani-
fests itself in the nonlocal nature of the integral operator).
The PIDE is then solved in () subject to the initial condi-
tion at time zero and the knock-out condition with rebate R
imposed everywhere in ¢. This is in contrast with diffu-
sions, for which only a boundary condition on the boundary
dQ) is needed.

In the two-dimensional SVCJ model, the value func-
tion also depends on the initial variance at time ¢, repre-
sented by the scaled and centered state variable Y, =y,
U =U(t, x, y), and the differential and integral parts of the
operator are

1 &
AU =500y + DUp +pp(y + DU, + 25 (v + DU,

1
+ (,LL— 50()}—}— 1)>Ux—KyUy—(r+)\)U,

%U(I,x,y)=)\/ / U(t,x+z",y+2")p(z*,2%)dz’ dz".
— Y0

The initial condition is U(0, x, y) = /(x), where (x) is
the payoff (which for call and put options depends only
on the x variable). Finally, for knock-out options, the ap-
propriate knock-out conditions are imposed as discussed
previously.

3. Spatial Discretization

3.1. Localization to Bounded Domains

For European and single-barrier calls and puts in one-
dimensional jump-diffusion models, the state space () is
unbounded () = (x, o0) for down-and-out options, () =
(—o0, X) for up-and-out options, and ) =R for European
options without barriers). In the SVCJ model, Q is
unbounded even for double-barrier options due to the
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additional state variable y € (—1, o). To develop numer-
ical approximations, we localize the original problem
by considering an increasing exhausting sequence of
bounded open domains {€,}2, such that Q, C Q,,, and
Ure; ©, = Q. Then, the value function U of the original
problem on the unbounded domain () is realized as the
limit of a sequence of functions U, that solve the localized
PIDEs on bounded domains

Ui, —4U, —BU, =0, te(0,T], xeQ,, (3.1
with the initial condition
U, (0, x)=¢(x), xel. (3.2)

An artificial knock-out condition is imposed everywhere
in (Q,):
U/(t,x)=R(x), xe(Q), (3.3)
where R(x) is the artificial rebate. In other words, we
approximate the original option contract with an artificial
option contract that knocks out when the process exits
a bounded domain ), and pays a rebate R(X. ) at the
first exit time 7. The economics of the problem typically
dictate an appropriate choice of the artificial knock-out
condition. For European options, the payoff function pro-
vides a reasonable choice for the artificial knock-out condi-
tion: R(x) = ¢ (x) for x € (Q,)¢, where in one-dimensional
models Q, = (x,, ;) and x, - —oo, X; = o0 as k — o
(in the SVCJ model, Q, = (x;, X)) X (y;, ¥;)). For down-
and-out put options with the lower barrier L, the vanishing
knock-out condition R(x) =0, x € Q,, provides a rea-
sonable choice. In one-dimensional models, Q, = (x, x,),
where x =In(L/K) is determined by the contractual lower
barrier L specified in the option contract and X, — oo as
k — oo is the artificial upper barrier. For x > X, it provides
a reasonable choice for the artificial knock-out condition
because the value function of the down-and-out put rapidly
decreases toward zero for high stock prices. Other types of
knock-out options are treated similarly.

For the localized problem, we have (see Bensoussan and
Lions 1984 for general results on localization of PIDE
problems to bounded domains)

max |U(t,)—=U.(t, )| 0y —0 as k—
max UG ) = Ut ) o =

for any fixed compact set G € ). The set G is referred to
as the approximation domain, where we are interested in
the value function U. The bounded domain (2, is referred
to as the computational domain (see Marcozzi 2001 for
details in the diffusion setting). Kangro and Nicolaides
(2000), Matache et al. (2004), and Hilber et al. (2005) show
that the localization error decays exponentially in the size
of the computational domain in the Black-Scholes setting,
in the Lévy process setting, and in the stochastic volatility
setting, respectively.

Other choices for artificial knock-out conditions can be
used to localize the problem to a bounded domain. In this
paper, we use the payoff function as the artificial rebate
in the artificial knock-out condition for European options,
down-and-out calls, and up-and-out puts (R(x) = ¢(x))
and vanishing knock-out conditions for double-barrier call
and put options, down-and-out puts, and up-and-out calls
(R(x) = 0) (for simplicity, we assume that the original
knock-out contracts do not pay any contractual rebates). In
the remainder of the paper, we take a bounded computa-
tional domain (), as given and solve the PIDE on (), with
the artificial knock-out condition in ({,)°. We drop the
index k to lighten notation.

3.2. Variational Formulation

We consider a variational formulation of the problem (3.1)—
(3.3) on a given bounded domain ). This PIDE may
have a nonhomogeneous knock-out condition (with rebate
R(x) #0). We homogenize it as follows. The rebate R(x)
is defined everywhere in (1°. We extend it to () as well
and also denote the extended version by R (in this paper,
we either have R(x) =0 or R(x) = ¢)(x), the option pay-
off). Let u:=U — R (for R = ¢, u can be interpreted
as the excess option premium over the payoff; for Euro-
pean options it can be negative because the exercise is not
allowed until expiration).

A variational (weak) formulation of the PIDE problem
is obtained by considering a space of test functions square-
integrable on (), vanishing in ¢, and with their (weak) first
derivatives square-integrable on (). Multiplying the PIDE
with a test function v = v(x), integrating over (), and inte-
grating by parts, we arrive at the variational (weak) formu-
lation of the PIDE:

(u,,v)+a(u,v) —b(u,v)+a(R,v) —b(R,v) =0, (3.4)
(u(0,-),v) = (¢ — R, v), (3.5)

where (u,v) = [, u(x)v(x)dx is the inner product in
L?(Q), and the two bilinear forms a(-, -) and b(-, -) in one-
dimensional jump-diffusion models with Q = (x, X) are
defined by

a(u,v):%azf'uxvxdx—,ug/ uxvdx—i—(r—i—)\)/ uvdx,

b(u,v) = (Bu,v) = /\fj /7: u(x + z)v(x)p(z) dz dx.

In the SVCJ model, when the computational domain is ) =
(x, %) < (y,9)s

a(u,v)

Tyl 1
:/ / (E(y—i-1)(Ouxvx—i—pfuyvx—i—pfuxvy+§§2uyvy)
x Jy

&
+ <ky + %) u,v

1 1 1
_ </~L_ ng_ze— E0y>uxv—i—(r—l—/\)bﬂ)) dydx,
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X py poo po0
buwv=r[ ["f /0 u(x+25y+2")v(x,)
x Jy J—oo
p(z%,2)dz’ dz* dydx.

To solve the variational formulation, we seek a function
u = u(t,x) in an appropriate function space such that
(3.4)—(3.5) hold for any test function v. The solution u van-
ishes outside of (). The value function U is then obtained
by U=R+u.

More details on the variational formulation of parabolic
PDEs associated with diffusion processes can be found in
Quarteroni and Valli (1997) and Thomée (1997), where
the relevant functional analytic background can be found.
The variational formulation of PIDEs associated with jump-
diffusion processes can be found in Bensoussan and Lions
(1984). A variational formulation of Merton’s (2002) jump-
diffusion model can be found in Zhang (1997). Matache
et al. (2004, 2005a) develop a variational formulation for
Lévy process-based models. Hilber et al. (2005) develop a
variational formulation for the Heston SV model.

3.3. Finite-Element Discretization:
One-Dimensional Models

We now consider a spatial discretization of the variational
formulation (3.4)—(3.5) by the finite-element method (see
Ciarlet 1978, Johnson 1987, Larsson and Thomée 2003,
Quarteroni and Valli 1997, and Thomée 1997 for textbook
treatments of the finite-element method). Consider a one-
dimensional problem on a bounded domain Q = (x, X).
We divide the interval ) =[x, x] into m + 1 subintervals
(elements), each having length of A = (x — x)/(m+1). Let
x;=x+ih,i=0,1,...,m+ 1, be the nodes in [ x, X]. We
define the following piecewise-linear finite-element basis
functions {¢,, ;(x)},:

(x=x;.)/h, Xy <x<x,
by, (x) = (Xip1 —X)/h, X <X <Xy

0, X E[xys X ]

The ith basis function ¢, ;(x) is a hat function equal to one
at the node x; and zero at all other nodes. If we define the
hat function ¢(x) := (x+1)1_ < <o) + (1 =x)1;y_ <), then
¢,.:(x) = ¢((x — x;)/h). More generally, we can define
¢, ;(x) for all integer i € Z. The nodes x, = x and x,,,, =
x are on the boundary, and the nodes x; with i <0 or i >
m + 1 are outside of the interval [x, x] (we will need to
consider nodes outside of (x, x) when computing the load
vector below due to the nonlocal character of the integral
operator %).

We look for a finite-element approximation u, to the
solution u of the variational formulation (3.4)—(3.5) as a lin-
ear combination of the finite-element basis functions with
time-dependent coefficients

m

(1, x) = u; ()b, ;(x),

i=1

1[0, T]. (3.6)

Note that u, vanishes outside of () by construction. Denote
by u(t) = (u,(¢), ..., u,(t))" the m-dimensional vector of
time-dependent coefficients to be determined. Substituting
(3.6) into (3.4)—(3.5) and letting the test function v in (3.4)-
(3.5) run through the set of all basis functions {¢,}",, we
obtain the following m-dimensional system of ODEs:

Mu’'(7) + Au(z) —Bu(r) + F=0, +€(0,T], (3.7)
with the initial condition
Mu(0) = C. (3.8)

Here, w' (1) = (u| (1), ..., u,,(1))", u;(t) = du,(t)/dt, M =
(mij)?fj:l’ my; = (¢;, b;), A= (aij):?,ljzl’ a; = a(d;, ),
B = (b P=1s by = b(¢;, ¢;), C = (crseescy)’s ¢ =
W — R.$). and F = (F.....F,)". F, = a(R.,) —
b(R, ¢;) (to lighten notation, we omit the index % in ¢, ;).

This ODE system is referred to as a semidiscretization of
the variational problem. The problem is reduced to the inte-
gration of this ODE system. This is referred to as the finite-
element method-of-lines (MOL) (“lines” is a metaphor for
the lines (x;, t), t = 0 in the (x, t)-domain, x; fixed, along
which the approximations to the PDE solution are studied;
see Hundsdorfer and Verwer 2003). Due to the origins of
the finite-element method in structural engineering, M is
referred to as the mass matrix, A as the stiffness matrix, and
F as the load vector. We call B the jump matrix. For each ¢,
on a bounded domain (), the semidiscrete finite-element
approximation is second-order accurate in the spatial step
size h:

luay (£, ) — u(z, )| < C2,

both in the L2() norm and in the L*({) norm (more pre-
cisely, in the maximum norm, the error estimate is C h2e
for any € > 0; maximum norm error estimates in the finite-
element method are particularly relevant in financial engi-
neering as the worst-case pricing error estimates).

The mass matrix M and the stiffness matrix A can be
computed in closed form in this model (for more general
processes, they can be computed by Gaussian quadrature
as discussed below). For any i, j € Z, from the definition
of the bilinear form a(-, -), we have

2 1
Ay b)) =ay=3(r+ D+ 1 0%,
1 1 |
a(e;, diyy) =d; =i§M+8(r+/\)h_ ﬂa )

and a(¢;, ¢;) =0 for |i — j| > 1. Moreover,

(¢i’ ¢z) = %h’
((i)i? ¢]) =0,

(d)i’ ¢iil) = éh,
li—j| > 1.
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Therefore, both A and M are tridiagonal m x m matrices for any i, j € Z, where
with constant diagonals:
- 0 4 0 B, (x)=A [ b,(x+2)p(:)dz
.. 1
A=l @ YIS = [ $()p((x+j—Dh)dx
. .. 6 -1
. - oa; 1 |
0 a_, aq 0 1 4 =/\h/0 [xp((x—14+j—10)h)
The elements of the jump matrix + (1 =x)p((x+j—1D)h)]dx. (3.11)

bij = b(d’js ¢l) = (%¢js d’[)

have the form
by = /\/‘i /_m ¢;(x +2)¢;(x)p(z) dzdx
= /\‘/‘x,url /"‘j# d)j(y)d),«(x)p(y — x) dy dx

— w/_ll [_11 () (w)p(w—u+j—iYh)dwdu (3.9)

and depend only on the difference j — i. Therefore, B is a
Toeplitz matrix of the form

bll b12 blm

b21 bll bl,m—l
B=

bml bmfl,l e bll

We only need to compute 2m — 1 values. The double inte-
gral (3.9) can be computed directly by two-dimensional
Gaussian quadrature. Alternatively, in our implementation,
we compute b; = (B¢;, ¢;) as follows. We approximate
the function (%B¢;)(x) by its finite-element interpolant
1, B ;(x):

Beb;(x) ~ 1, B, (x) =D _(Bb;) (x)) b, (%),
leZ

where I, is the finite-element interpolation operator. The
finite-element interpolant I,f(x) = Y, f(x,)¢,;(x) of a
function f(x) is equal to the value of the function at
the nodes x; and interpolates between the nodes with the
piecewise-linear finite-element basis functions ¢,(x). The
error of the finite-element interpolation is O(A?) and is,
thus, of the same order as the spatial discretization error
in our semidiscrete formulation of the PIDE. Hence, we
do not decrease the order of our numerical approximation
by doing the interpolation. We then have the following
approximation:

(Bo;, ¢;)
~ IZ: %d)j(xl) (b1, d1)

I=i—1

= %h Bep;(x;_) + %h'—%d’j(xi) + éh%(b_/’(le) (3.10)

2

Note that %B¢;(x;) depends only on the difference j — I.
Hence, to compute the jump matrix B, we need to com-
pute 2m+1 values B¢, (x;). In Kou’s (2002) and Merton’s
(1976) models, the integrals in (3.11) can be calculated
analytically. In Kou’s (2002) model, B¢ ;(x,) are given by

A A
By () = Lo (1= eI UTIIEji,
n

\h
A 1—p)A
) = A — L2 (1 ey LD oy,
mh mh
j - l = 09
%d)j(xl) = M(] — e*"lzh)Ze(j*Hl)leh’ j—I1<—1.
nh
In Merton’s (1976) model,
B;(x)
_A ﬁ(e,((j,,,,),,,m)zﬂsz e (G=Dh=m? 252
2 J/7h

_{_ef((j—H»l)hfm)z/Zsz)

o (b))
) (50--5)
(D))

where E(x) = (2//) [; e~ dt is the error function.

For a general jump-magnitude distribution, the integral
(3.11) is computed by numerical quadrature. The one-point
Gaussian quadrature rule that evaluates the integrand at the
center of the integration interval of length % has errors of
the order O(h?) and is, thus, sufficient for the finite-element
approximation (see, e.g., Ciarlet 1978, §4.1):

Be;(x)) ~ 3hA[p((j — 1= 1/2)h)
+p((j—1+1/2)h)]. (3.12)

The elements of the load vector F, F, = a(R, ¢;) —
b(R,¢,),i=1,...,m, are computed as follows. The first
term a(R, ¢,;) can be computed analytically in this model
for R =, where ¢ is a call or put payoff. Generally, it
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can be computed by Gaussian quadrature. The second term
b(R, ¢;) = (%R, ¢,) can be computed by two-dimensional
Gaussian quadrature. Alternatively, in our implementation,
we approximate the rebate by its finite-element interpolant
R(x) ~ I,R(x) =3 ;.7 R;¢;(x), where R; = R(x;), j € Z,
are nodal values. Then, b(R, ¢,) is approximated by

BR.G)~ Y b bR~ Y b(dy. d)R,. (313)

Here, we have truncated the infinite summation because
by (3.11)=(3.12), b;; = b(¢;, ¢;) are negligibly small for
|i — j| = m due to decay of the jump-size probability den-
sity p(x).

Finally, the initial condition Mu(0) = C with the vec-
tor C, ¢; = (y — R, ¢,), is treated as follows. For R = i,
C vanishes identically, and we have a vanishing initial con-
dition u(0) =0. For R=0, ¢; = (i, ¢;) can be computed
analytically for simple payoffs or by Gaussian quadrature
in general. Then, u(0) is obtained by solving Mu(0) = C.

ReEMARK 3.1. The jump matrix B is Toeplitz. In the numer-
ical solution of the ODE system (3.7), we need to perform
the jump matrix-vector multiplication at each time step.
The Toeplitz matrix-vector multiplication can be accom-
plished efficiently in O(mlog,(m)) floating-point opera-
tions using FFT (see the online appendix).

3.4. Finite-Element Discretization:
The SVCJ Model

Now consider the two-dimensional SVCJ model on a
bounded computational domain Q = (x,x) x (y,y). We
divide [x, %] into m + 1 equal intervals of length h =
(x —x)/(m+1) and [y, y] into n + 1 equal intervals of
length h, = (y — 3)/(n + 1). The nodes are (xi,¥;) =
(x+ih,, y+jh,),i=0,1,...,m+1, j=0,1,...,n+1.
The rectangular two-dimensional finite-element basis func-
tions are defined for any i=1,...,mand j=1,...,n as
the product of the one-dimensional basis functions

bi(x. )=, i (P (V) =d((x—x)/h)P((y—y,)/ 1),

where ¢, () and ¢(-) are as defined in the previous sub-
section. The two-dimensional pyramid function ¢;; is equal
to one at the node (x;,y;) and zero at all other nodes.
There are m x n nodes in [x,x] x [y,y]. We arrange
the nodes as follows: (x;, v;), (X, %), .- (X1, ¥,)s (X5, ),
(%5, ¥5), -+ +» (x,,, ¥,)- More generally, for arbitrary i, j € Z,
we define the nodes (x;, y;) and basis functions ¢,; as above.

The elements of the mass matrix can be computed in
closed form:

4h,hy/9, i=k, j=1,

h.h,/9, i=k+£l,j=lori=k, j=Il+£l1,
(¢kl»¢ij)= ’ . .

hoh,/36, i=k+1, j=1+1,

0, i—kl>1or|j—1>1.

Hence, M is block tridiagonal with tridiagonal blocks:

M, M, 0
M= M, VU ’

. - My,

0 M, M,

4 1 0
Y _hxhy 1 4 Mo Mo — g
n=-y ) 12 = My = g My,

1

0 1 4

with a total of nine nonzero diagonals. To compute ele-
ments of the stiffness matrix A, we need to compute
a(¢y, @) fori,k=1,...,mand j,I=1,...,n, with the
bilinear form defined in §3.2. The integrands in a(¢y,, ¢;;)
are polynomials with the highest-order terms x%y* and
xy3. For such integrands, the 2 x 2 Gaussian quadrature
rule (the tensor product of two-point Gaussian quadrature
rules for each coordinate) is exact. For fixed j and I,
a(¢y, ¢;;) depend only on the difference i — k. Moreover,
a(¢y, ;) =0 for [i —k[ > 1 or |j—1| > 1. Therefore, A is
also a block tridiagonal matrix with tridiagonal blocks:

All A12 0

A — A21 All )
AIZ
0 A2l All

with a total of nine nonzero diagonals. It suffices to com-
pute the blocks A,,, A,,, A,; with the total of 3(3n — 2)
nonzero values.

The elements of the jump matrix B are defined by

b(by» b))
[T sy
o -p(z',2") dz” dz* dy dx
= bt
- plu—x,w—y)dwdudydx
=iz [ [ ss0swsm)
p((u—x+k—i)h,,

(w=y+I1—j)h)dwdudydx. (3.14)

The b(¢y;, ¢;;) depend only on the differences k — i and
I — j. Hence, B is a block Toeplitz matrix with Toeplitz
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blocks (BTTB) with m? blocks, and each block is an n x n
Toeplitz matrix:

Bll Bl2 Blm
B, B :
B: .21 .ll
By,
Bml B21 Bll

For the SVCJ model, because there is no negative jump
in variance, b(¢y, ¢;)) =0, [ — j < —1, and each block
in B is nearly upper diagonal, and there are a total of
(2m—1)(n+1) values to compute. As in the one-dimen-
sional case, the b(¢y, ¢;) can be approximated by the
finite-element interpolation

D $)~ 3 3 (5805 7) (b)),

where
(%(bk[) (xr’ ys)

:/\f,w/Oood’u(xr+Z",ys+z)')p(zx,zy)dzydzx
=/\h'th[1/1¢(u)¢(w)p((”+k—r)hx,(w—i—l—s)hy)dwdu

:/\hxhy/Ol/OI[uwp((u—l—i—k—r)hx,(w—l—i—l—s)h),)
+(—wwp((u+k—r)h,(w—1+1—s5)h,)
+(-w)(1-w)p((utk—r)h,,(w+l-s)h,)
+u(l—w)p((u—1+k—r)h,,

(w—i—l—s)h_v)]dwdu.

We use the Gaussian quadrature to compute this integral
(1 x 1 Gaussian quadrature rule with the integrand evalu-
ated at the center of the rectangle [0, 1] x [0, 1] (the tensor
product of one-point Gaussian quadrature rules for each
coordinate) has errors of the order O(h?), the same order as
the error of the finite-element spatial discretization; higher-
order Gaussian quadrature rules such as 2 x 2 (the ten-
sor product of two-point Gaussian quadrature rules) can
be used to improve the constant in the Ch* error estimate
without affecting the order).

To compute the load vector, the quantities a(R, ¢;;) can
be computed by Gaussian quadrature and b(R, ¢;;) can be
computed by Gaussian quadrature or approximated as in
the one-dimensional case

i+m—1  j+n—1
b(R, ;) ~ Z Z (B )Ry
k=i—m+1 I=j—n+1
where R,, = R(x,,y,) = R(x,) (the option payoff is inde-
pendent of the volatility variable y). Finally, as in the one-
dimensional case, the initial condition is either u(0) =0
when R = i, or the solution of Mu(0) = C when R =0.
Here, C = (c;), ¢;; = (¢, &;;) = h,c;, where ¢; = (s, ¢,) is
computed as in the one-dimensional case.

4. Integrating the ODE System:
An Extrapolation Approach

We have reduced the option-pricing problem to the solu-
tion of the ODE system (3.7). In this section, we present
a time-stepping scheme to solve this ODE system numer-
ically. The scheme is based on applying an extrapolation
procedure to the IMEX Euler time-stepping scheme. We
first described the IMEX Euler scheme and then the extrap-
olation procedure.

For the one-dimensional jump-diffusion model, we
observe that M ~ O(h), A~ O(h™"), and B ~ O(h?) (for
the latter, see Equations (3.10) and (3.12)). Hence, the
system (3.7) is stiff. In particular, the term Au resulting
from the discretization of the diffusion part of the PIDE
generates stiffness, while the term Bu resulting from the
discretization of the integral operator does not generally
generate stiffness. For stiff systems, fully explicit schemes
are only conditionally stable and may require prohibitively
small time steps when % is small. Therefore, we treat the
term Au implicitly for stability reasons. Recall that B is a
dense matrix (as opposed to the tridiagonal A). Because it
does not generate stiffness, we treat the term Bu explicitly
to avoid inverting the dense matrix. This is an example of
an IMEX time-stepping scheme (see Hundsdorfer and Ver-
wer 2003, §IV.4 for a survey of IMEX methods for ODEs
and PDEs).

Divide the time interval [0, T] into N time steps, each
having length k = T /N, and with the nodes ¢, = ik, i =
0,1,...,N. Define ' :=wu(z,), i=0,1,..., N. Then, the
IMEX Euler time-stepping scheme starts with the initial
condition Mu® = C and marches forward according to

M+kA)' =M+ kB~ —kF, i=1,...,N. (4.1)

At each step, the linear system (4.1) is solved to determine
the m-dimensional vector w’. This scheme is uncondition-
ally stable,! first-order accurate in time, and its error is
known to have an asymptotic expansion in the powers of
the time step k:

w(T)—u" =e (T)k+e(T)k*+---. 4.2)

Generally, the Euler scheme for the ODE ' = G(u) has an
asymptotic error expansion (4.2) if the right-hand side G is
smooth. In our case, G is linear and, hence, (4.2) holds.

The asymptotic error expansion (4.2) suggests apply-
ing extrapolation to cancel lower-order terms in the error
expansion and to increase the order of the scheme. Ref-
erences on extrapolation methods for stiff ODE sys-
tems include Deuflhard (1985), Deuflhard and Bornemann
(2002, §6.4.2), and Hairer and Wanner (1996, §IV.9).

We now describe the extrapolation scheme based on the
IMEX Euler scheme. We need to integrate the ODE system
on the interval [0, T']. Assume that a basic step size H (H =
T/N) and an extrapolation stage number s > 1 are given.
Then, one constructs a sequence of approximations to u(H)
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(at time H) using the discretization method (4.1) with inter-
s+1

nal step sizes k;=H/n;, i=1,2,...,s+ 1, where {n;}]|
is the step number sequence. For the extrapolation scheme
based on the IMEX Euler time stepping, we use the har-
monic sequence {1,2,3,...,s+ 1}. Denoting the approx-
imation obtained at time H (after one basic step) with
internal step size k; by T, | = u(H; k;), the extrapolation
tableau is constructed as follows:
T, =T, i T
B (ni/ni_jq)—1 ’

i=2,...,s+1,j=2,...,i. (43)

i—1,j—1

The extrapolation tableau can be graphically depicted as
follows:

Tl,l
T2 1 T2,2
Ts+l, 1 Ts+l,2 T.v+l,x+1 .

The value T, ., after s extrapolation stages is accepted
as the approximation to u(H) and is used as the starting
point to launch a new basic integration step over the next
interval [H,2H]. The procedure is continued in this way
for N basic steps until the approximation of u(7’) at time
T = NH is obtained. We now investigate the properties of
the extrapolation scheme.

PROPOSITION 4.1. We have the following error estimate:

u(H) — Tyt o1 = O(kiky -~ kgiy)

= 0(H5+1/("1”2 cfgy)) (4.4)
For the step number sequence {1,2,3,...,s+ 1}, we have,
in particular,
u(H) =Ty = OH™ /(s + 1)), 4.5)

The total number of time steps required to compute T | .,
(the total number of times the linear system (4.1) needs to
be solved) is

N,o= (s 4+ 1)(s+2)/2. (4.6)

ProoF. For each T, |, we have the asymptotic error expan-
sion of the form (4.2):

u(H)—T, =e (H)k;+e,(H)kI+---,

where k; = H/n;,. From the asymptotic error expansions
for T, ; and T, |, we can eliminate the terms e, (H)k, and
e,(H)k, by forming a new approximation for u(H):

_ kT, , —k, T, ,

T2,2— - p T2,1 _Tl,l
1= "2

=T —_—
LiF (ny/ny) =1

which has the asymptotic error expansion u(H) — T, , =
—e,(H)kky + ---. The error is of the order O(kk,).
Continuing recursively down the extrapolation tableau,
we determine that the error estimate for each T, ; is
u(H) —T,; = O(kik;_,---k;_;;,), and, in particular, for
i=j=s+41, we obtain (4.4). For the harmonic step num-
ber sequence {1,2,3,...,s+ 1}, we obtain (4.5). The total
number of time steps required to compute Ty, ., is 1+
24344+ (s+1D)=(s+1)(s+2)/2. O

Thus, the error after s extrapolation stages is of the order
O(H**'/(s 4+ 1)!). Recall that the factorial can be well
approximated by n! ~ /27 (14 1/(6n))n"*'/2¢=" (a refine-
ment of the Stirling formula). This approximation is very
accurate even for small n (e.g., for n = 2, this, gives
1.9974). For fixed s, the error of the extrapolation scheme
is thus

ll(H) - Tx+1,s+l
=0({2m(1+1/(6(s+ 1))} "*
exp{—(s+3/2)In(s + 1) + (s + 1)(1 +In H)}).

To get some intuition on the dependence of the error on
the number of time steps, recalling that the total number
of time steps needed to integrate the ODE on the interval
[0, H] is N, = (s+ 1)(s+2)/2, we write the error estimate
as follows:

u(H) =T, = 0(e V%), 4.7

This suggests that the error decreases as e~V with
the increasing number of time steps V,. We stress that the
argument above is not rigorous. Proposition 4.1 only states
that for fixed s and H — 0, the error is asymptotically
O(H**'/(s+1)!). Generally, it does not say anything about
the behavior of the error with increasing s because the con-
stant C in the estimate CH**!/(s + 1)! may depend on s
and, hence, on ;. If a hypothesis that the constant can be
made independent of s (or increases slowly with s) holds,
then Equation (4.7) would, in fact, provide an error esti-
mate in terms of the number of time steps. Unfortunately,
it appears difficult to prove this hypothesis. However, in
our numerical experiments with option pricing applications,
we do observe the rate of convergence suggested by the
heuristic (4.7).

For a fixed basic step H and a fixed number of extrap-
olation stages s, the total number of time steps needed to
integrate the ODE on the time interval [0, T'] is Ny 5 (=
N(s+1)(s+2)/2, where N =T/H. Due to rapid conver-
gence of the extrapolation scheme, N and s are typically
small in option pricing applications, resulting in the small
total number of time steps N required to achieve desired
accuracy.

At each time step, we need to solve the linear system
(4.1). In one-dimensional models, we have a tridiagonal
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system. This can be solved using the LU decomposition
with forward/backward substitution in O(m) operations
for a system of order m. In the two-dimensional SVCJ
model, we need to solve a block tridiagonal system. Direct
solvers such as LU decomposition become computation-
ally expensive, and iterative solvers are typically preferred.
In our numerical experiments, we use the successive over-
relaxation (SOR) algorithm. Because the coefficient matrix
of the system for the SVCJ model is block tridiagonal with
tridiagonal blocks (nine nonzero diagonals), SOR takes
9mn multiplications for each iterate, as compared to the
m?n* multiplications for a full coefficient matrix. At each
time step, we also need to compute the jump matrix-vector
multiplication Bu'~!. In one-dimensional models, the jump
matrix is Toeplitz. The Toeplitz matrix-vector multiplica-
tion is accomplished in O(mlog,(m)) floating-point opera-
tions using FFT, as compared to the m? operations for direct
matrix-vector multiplication (see the online appendix).
Hence, our time-stepping scheme takes O(AN'mlog,(m))
floating-point operations, where N is the total number of
time steps. In two-dimensional applications such as the
SVCJ model, the jump matrix is a block Toeplitz matrix
with Toeplitz blocks (BTTB). The BTTB matrix-vector
multiplication can be done in O(mnlog,(mn)) floating-
point operations (see the online appendix), as compared to
the m?n? operations for direct matrix-vector multiplication.
Hence, the total operation count is O(Nmnlog,(mn)).

So far, we have taken the basic step size H and the
number of extrapolation stages s as given. We now dis-
cuss the selection of H and s in practice. First, suppose
that H is fixed, and select a local error tolerance € > 0.
After j extrapolation stages, T, ;,, approximates u(H).
The error estimate is €; := T,y ;1 — T,y ;= (the
so-called subdiagonal error estimate; see Hairer and Wan-
ner 1996, p. 140). After each extrapolation stage with j > 2,
we compare the estimated error €; with the preceding error
€;_, and with the desired local error tolerance €. When-
ever €; < € for some j < sy, we accept T, .., as the
approximation to u(H) and move on to compute the solu-
tion over the next basic step [H,2H] starting with u(H).
Alternatively, whenever €, > €, ; (i.e., increasing extrap-
olation depth does not result in further error reduction) or
if the desired error tolerance is not achieved in s,,, stages,
we restart the computation of the step with a smaller H,
say H,., = H,4/2. In our numerical experiments, we typ-
ically set s, = 10, so that if the desired error tolerance
is not achieved in 10 extrapolation stages, we reduce the
basic step size. This simple procedure allows us to select
the basic step size H and the extrapolation stage s adap-
tively. The only user-specified parameter in addition to the
desired local error tolerance is the initial basic step size H.
If the initial H is too large relative to the error tolerance,
the adaptive procedure will reduce it and restart the compu-
tation with smaller H. If H is selected too small relative to
the desired error tolerance, more time steps than necessary
will be computed. In our computational experiments with

options pricing problems in §6, H = (0.5 year has proven
adequate as a starting basic step size for local error toler-
ances up to 107> (without the need to reduce the basic step
size in most cases). For problems with maturities less than
six months, we set H = T. For faster computations with
less precision (e.g., error tolerances up to 1072), the basic
step H =1 can be used as a starting step. For more precise
benchmark computations, H =0.25 can be used.

5. Further Applications and Extensions
of the Extrapolation Method

5.1. Pricing Bermudan Options

Our method also directly applies to Bermudan options.
A Bermudan option can be exercised on any date in a
given discrete set of dates. Consider a Bermudan option
with maturity 7. Suppose that the option holder has
the right to exercise the option at any date in the set
{0,A,2A,...,N;A =T}, where A > 0 is a fixed-time
interval between the possible exercise dates and Ny =T /A.
We denote the value function of the option at time jA by
Vi(x), j=0,1,..., Ng. At the option maturity T = NyA,
the option value is given by the payoff function V3 (x) =
Y (x). In the time interval [(Ny — 1)A, NyA) proceeding
expiration, the option value as a function of the state vari-
able x and time remaining to maturity ¢ solves the follow-
ing PIDE (see §2.2):
U —AU—-BU =0, te€(0,A], xeQ,

with the initial condition U (0, x) = V3 (x) = (x), x € Q,
and the artificial knock-out condition U(¢,x) = (x),
x € QF° (as in the case of European options, we approximate
U in the knock-out region Q¢ by the payoff function ).
The above PIDE need to be solved to obtain the contin-
uation value function U(A, x), i.e., the value function at
(calendar) time (Nz — 1)A before applying the early exer-
cise constraint. Because the option holder can exercise the
option at time (Ny — 1)A, the option value VVs~! at time
(Ny — 1)A is therefore given by

V¥l (x) = max {¢(x), U(A, x)}.

Then, starting from V¥5~!(x), we compute the option value
at time (N —2)A using the same procedure. By induction,
to compute the option value V/(x) at time jA, 0 < j <
Ng — 1, we solve the following PIDE problem:

U —oAU—BU=0, te(0,A], xeQ, (5.1)
U@, x)=V""(x), xeQ, (5.2)
Ut x) = h(x), xeQF, te(0,Al (5.3)

and then apply the early exercise condition

Vi(x) = max{U(A, x), (x)}. (5.4)
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Therefore, we need to successively solve Ny initial value
PIDE problems between the consecutive early exercise
dates to obtain the value function of the Bermudan option
at the contract inception. Each of these initial value prob-
lems can be discretized in space as described in §3. Let
u = U — . Then, the linear-finite element discretization of
§3 leads to the following recursive system of ODEs:

Mu'(¢) + Au(s) — Bu(z) + F =0,
Mu(0) = C/*,

te(0,A],

where A, B, F are the same as in §3 with the payoff serving
as the artificial rebate in the boundary condition, R = ¢,
and the initial condition vector C/*' = (¢]™', ..., ¢/*)T,
c/™ = (Vit! — . $,) for each of the ODEs. The func-
tion V/*! is obtained at the previous step and is used in
the initial condition for the current step. Approximating
the function V/*! and the payoff ¢ by their finite-element

interpolants, the initial conditions simplify to

u(0) = (u,(0), u5(0), ..., u,,(0)),

w(0) =V —y, i=1,2,...,m,
where ¢, and Vij *! are the nodal values. At each step of the
recursion, the ODE is integrated in time using the extrap-
olation scheme described in §4. Numerical results will be
presented in §6.

While the treatment of Bermudan options is straight-
forward, a more significant extension is required for the
efficient pricing of American options with continuously
allowed early exercise. One approach is to approximate
American options with Bermudan options with a large but
finite number of allowed early exercise dates. It is a viable
approach, and our method can be used to price the approx-
imating Bermudan option. However, the convergence of
Bermudan option prices to the continuous American price
as A — 0 is known to be slow. Thus, to get accurate
approximations in this approach, one will have to price
Bermudan options with very small A, which will require
solving a large number of ODE systems. Alternatively, one
may try applying extrapolation in A, by pricing a sequence
of Bermudan options with decreasing A and then extrapo-
lating to the limit A — 0.

A possibly more efficient (and significantly more in-
volved) alternative is an adaptive implementation of the
extrapolation scheme with adaptive time step and extrap-
olation order selection to integrate a nonlinear system of
ODEs resulting from the semidiscretization of the penal-
ized PIDE approximation of the variational inequality (see
d’Halluin et al. 2004 for the penalty method for American
options). It is well known in the literature that the American
option problem generally requires adaptive time stepping
for high-order schemes to realize their expected high-order
convergence. This makes the American option problem
more computationally challenging. Adaptive extrapolation

schemes with automatic adaptive selection of the basic step
size H and the extrapolation stage s are described in Deufl-
hard (1985) and Deuflhard and Bornemann (2002). We
leave the study of these approaches to American options
with continuous early exercise for future research.

5.2. Lévy Processes with Infinite Activity Jumps

So far, we have limited ourselves to jump-diffusion pro-
cesses with nontrivial diffusion components and finite
activity jumps. In this section, we discuss to what extent
our approach can be extended to the pricing of options
under Lévy processes with infinite activity jumps. One
approach due to Cont and Voltchkova (2005) regularizes the
PIDE by approximating small jumps with magnitudes less
than some fixed € > 0 with a Brownian motion process with
matched volatility parameter and, hence, reduces the prob-
lem to a jump-diffusion process with finite-activity jumps.
This approach is also taken in Asmussen and Rosinski
(2001) in the context of Lévy process simulation. Follow-
ing this approach, one can extend our results in this paper
to infinite activity jumps. However, this solves the problem
only in part because the convergence estimates depend on
the size of the artificial diffusion coefficient introduced to
approximate small jumps.

We now discuss the possibility of directly applying our
extrapolation scheme based on the IMEX Euler method to
Lévy processes with infinite-activity jumps. Suppose that
the Lévy process has a nontrivial diffusion component with
volatility o > 0 and an infinite-activity jump component.
The infinitesimal generator of the Markovian jump pro-
cess can be interpreted as a pseudodifferential operator of
order v € [0, 2) (the diffusion operator, the Laplacian, is the
limiting case with » = 2). For example, the popular vari-
ance gamma (VG) model has order » = 0, the Carr-Geman-
Madan-Yor (CGMY) model has order » =Y € (0, 2), and
the normal inverse Gaussian (NIG) model has order v = 1.
The IMEX Euler scheme treats the jump part explicitly.
As discussed in Matache et al. (2004), treating a pseudo-
differential operator of order v explicitly leads to a stability
condition of the form Az < C(Ax)”. For the VG jumps, this
gives a mild stability condition Az < C independent of the
spatial discretization step size Ax. We thus expect that our
extrapolation scheme based on the IMEX Euler will work
well for the diffusion-extended VG model. As we will see
in §6, this is indeed supported by numerical experiments.
For other Lévy jumps with v > 0, the stability condition
is more stringent because it depends on Ax. Still, for pro-
cesses with v < 1, it may be a viable method because the
stability condition is still quite mild. For » > 1, however,
the stability condition becomes more restrictive. For such
models, fully implicit schemes will be expected to be more
efficient. Furthermore, in the case of pure jump Lévy pro-
cesses with no diffusion component, the operator consists
of a first-order drift operator (a hyperbolic operator) and
a pseudodifferential jump operator of order ». Such prob-
lems without the diffusion operator require special care in
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the spatial discretization as well to realize the expected
convergence order. Our linear finite-element discretization
in this paper requires nonvanishing diffusion to realize the
expected O(h?) spatial convergence. More powerful, high-
order finite-element and time-stepping schemes, such as
wavelet Galerkin spatial discretization of the integrodiffer-
ential operator and hp-discontinuous Galerkin time step-
ping, can handle in a unified way all Lévy processes,
including pure jump processes with order v € [0, 2). These
powerful methods have been applied to option pricing
under Lévy processes in a series of interesting recent papers
by Matache et al. (2005b, 2006). While these methods are
more general than the extrapolation method of this paper
and are well adapted for pure jump infinite-activity pro-
cesses, they are significantly more complicated to imple-
ment and integrate in existing financial software systems.
In contrast, the extrapolation method is very straightfor-
ward to implement. We thus expect it to be a method of
choice in practice for jump-diffusion processes with either
finite-activity jumps or infinite-activity jumps with v =0
(such as the VG).

In the rest of this section, we develop the application
of our method to the diffusion-extended VG model. The
asset price process is assumed to follow S, = KeXi, t >0,
where X, =In(S,/K)+ ut+ 0B, +W(y,; 6, s), where B, is
a standard Brownian motion, and W is an independent
Brownian motion with drift 6 and diffusion coefficient s
time changed with a random time process vy, = y(t; 1, v),
a gamma Lévy subordinator with mean rate one and vari-
ance rate v (see Madan and Seneta 1990, Madan and Milne
1991, and Madan et al. 1998). To ensure that the total dis-
counted gains process including capital gains and dividends
is a martingale under the risk-neutral measure, the drift
parameter is restricted to u = r — g +1In(1 — 0y —s?v/2)/v.
The infinitesimal generator G of X is given by

610 =10t ufot [ (42— @) dz.

where 7r(-) is the Lévy density of the variance gamma
process

1 A 1 A
m(2)=—e Mg+ ——e M g,
( ) vz {z>0} V|Z| {z<0}

where

) > 2
N R R N [ 0

p st 2y 82 " st 2y 82

Note that [, 7(z) dz = oo. Therefore, the integral compo-
nent of G cannot be separated into two parts as in the cases
of finite-activity models. Correspondingly, the differential
and integral operators are defined as follows:

AU =10*U,, +pU, —rU,

BU(1, x) = /R[U(t, x+2) = U1, x)]7(2) dz.

For the finite-element discretization, we follow the same
procedure as in §3.3. In particular, we need to compute
B ;(x;). When j#1, ¢;(x;) =0 and

By (x) =h [ S()((j—1+)h)dx.

When j =1, ¢;(x;) =1 and ¢;(x; +z) =0 for |z| > h.
Then,

Bep,(x,) = h/_ll(d)(x) — Dyar(xh) dx —/ 7(2) dz.

{lzI>h}
The above integrals can be computed analytically in terms
of the exponential integral. Let E, be the exponential inte-
gral defined by E, (a) = ["(1/x)e " dx = [ (1/x)e™* dx.
Then, for j—12>1,
%d)j('xl)

1

— MU (] Ay
A hv

[ DE(G-1= DA =20~ DE (G~ DA, )

+( =+ DE ((j—I+1)A,R)].

For j—1< -1,

Bep;(x;)

_ ;eA,,h(j—Hl)(l . e—)\,,h)Z
A hv

n

—%[—(j—1+1)E1(—(j—1+1)A,1h)+2(j—1)
B (=(=DAR) = (1= DE (=(j—=1A,h)].

In the above, we use the convention that jE,(ja) =0 for
J =0 (note that lim, |, xE;(x) =0). Finally, when j =1,

5,(05) =~ (E () + By (0, )

1
1— —A,hy
i) T

n

(1—e").

Therefore, the jump matrix B can be constructed using the
above analytical formulas. The mass matrix, the stiffness
matrix, and the load vector are as in §3.3. From the above
expressions, we note that the diagonal elements of the jump
matrix B are now of order O(h), in contrast to the O(h?)
jump matrix for jump diffusions with finite-activity jumps.
This is similar to reaction terms in PDEs and leads to a mild
stability condition of the form A¢ < C for some constant
independent of the spatial discretization and dependent only
on the process parameters for explicit discretizations of the
jump term. The numerical integration of the resulting sys-
tem of ODEs is then accomplished using the extrapolation
of the IMEX Euler scheme as described in §4.
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While in this section we discuss Lévy processes, our dis-
cussion generally applies to any jump-diffusion processes,
not necessarily with stationary and independent increments,
including processes with time- and state-dependent coeffi-
cients (diffusion, drift, interest rate, jump arrival intensity,
and jump-size distribution). In the ODE formulation, the
stiffness and jump matrices A and B and the load vector
F depend on the choice of the process. If the coefficients
are time dependent, they become time dependent, and in
the discretization scheme, A‘, B, and F' will change from
time step to time step.

6. Numerical Experiments

In this section, we present our numerical results for Euro-
pean, Bermudan, and single- and double-barrier options in
one- and two-dimensional jump-diffusion models. Parame-
ters used in our numerical experiments are given in Table 1.
We investigate pricing errors due to localization and spatial
and time discretizations. Errors are in the maximum norm
on the approximation domain G = [log(0.8), log(1.2)] in
the x-variable (corresponding to the approximation domain
G = [80,120] in the underlying stock price) in one-
dimensional models and G = [log(0.8), log(1.2)] x [0, 3] in
the (x, y)-plane (corresponding to [80, 120] in the under-
lying stock price and [20%, 40%] in the volatility) in the
SVCJ model.

For Bermudan and barrier options, benchmark prices are
computed with large enough computational domains and
small enough space steps and time steps. For European
options in Kou’s (2002) and Merton’s (1976) models, accu-
rate benchmark prices can be computed using available
analytical solutions or the Fourier method (Carr and Madan
1999, Feng and Linetsky 2007). For European options in
the SVCJ model, the benchmark prices can be computed
using the Fourier method for affine jump diffusions due to
Duffie et al. (2000).

Figure 1 illustrates convergence of the finite-element spa-
tial discretization and effects of localization and numerical
integration in Kou’s (2002) and Merton’s (1976) models.
The four plots on the left show pricing errors for one-
year double-barrier put (DBP), down-and-out put (DOP),
and up-and-out put (UOP) options in Kou’s (2002) model.
The four plots on the right show pricing errors of one-year
double-barrier call (DBC), down-and-out call (DOC), and

Table 1. Parameter values used in numerical experi-
ments.

Kou c=0.1,A=3, p=0.3, n,=40, n, =12

Merton oc=0.1, A=3, m=-0.05, s =0.086

DEVG 0=0.1,5=0.16, v=0.1,0=-0.2

svcl A=4,v=0.02, m=-0.04, s =0.06,
pp=-—0.5,p,=-0.5, £=0.1, k =4,
0=0.04

Other parameters K =100, L =80, U =120, r =5%, ¢ =2%

up-and-out call (UOC) options in Merton’s (1976) model.
The two plots in the first row plot the maximum norm
pricing error as a function of the spatial discretization step
size h for double-barrier options with the jump matrix com-
puted by the one-point and two-point Gaussian quadrature,
as well as analytically, as described in §3. The error plots
are in log-log scale and clearly demonstrate the Ch? con-
vergence of the finite-element approximation. For Merton’s
(1976) model, using the one-point Gaussian quadrature to
compute the jump matrix produces errors nearly indistin-
guishable from the case where the analytical expressions
for b;; are used. For Kou’s (2002) model, using the two-
point Gaussian quadrature improves the constant in the
error estimate Ch? without affecting the order. The two-
point Gaussian quadrature produces errors nearly indistin-
guishable from the case where analytical expressions are
used.

While the double-barrier problem has a bounded domain
and no localization is needed, for single-barrier and
European options, we localize to bounded computational
domains. In particular, for down-and-out options, the
domain is [x, X,], where the lower barrier x is fixed con-
tractually and a sequence of increasing artificial upper bar-
riers X, is considered (denoted by xmax in the plots).
Similarly, for up-and-out options, the upper barrier x is
fixed contractually, and a sequence of decreasing artificial
lower barriers x, is considered (denoted by xmin in the
plots). When the computational domain is fixed and 4 is
refined, there is a minimum error beyond which no fur-
ther error reduction can be obtained by refining 4. This is
the localization error corresponding to this computational
domain. The computational domain needs to be enlarged to
obtain further error reduction. This can be clearly seen in
the two plots in the second row for down-and-out options
and in the two plots in the third row for up-and-out options.
For each fixed computational domain, these plots exhibit
the Ch?* convergence up until the localization error starts to
dominate. The localization error itself decays exponentially
in the size of the computational domain, as shown in the
two plots in the last row, where the localization error is
plotted in log-scale.

To study temporal convergence in integrating the ODE
system (3.7), for the purpose of comparison we also con-
sider an IMEX midpoint scheme that is second-order accu-
rate (Bader and Deuflhard 1983; Hairer and Wanner 1996,
Chapter IV). Let the number of time steps N be even. Then,
the IMEX midpoint scheme proceeds as follows:

Mu® = I;,

(M+kA)u' = (M + kB)u’ — kF,

M+ kA)a™ = (M — kA)u' ™" + 2kBu’ — 2kF,
i=1,2,....N,

uN — %(uN—l +llN+l).
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It starts with one IMEX Euler step, continues on with mid-
point steps in which the stiff diffusion part is treated implic-
itly and the nonstiff jump part is treated explicitly, and ends
with a smoothing step. The error of this scheme is shown
to be O(k*) (Bader and Deuflhard 1983, Theorem 2).
Figure 2 illustrates convergence of the temporal dis-
cretization. We consider a double-barrier put option in Kou’s
(2002) model and a down-and-out call option in Merton’s
(1976) model, both with one year to maturity. Similar results
were obtained for other types of options. The spatial dis-
cretization step size & was taken small enough to guarantee
spatial discretization error less than 1073, our target accu-
racy. For this fixed &, the benchmark values of the solution
of the system of ODEs are computed using small enough
time steps. For the extrapolation scheme, two basic steps of
six months each were taken (H = 0.5). Time discretization
errors are plotted for the first-order IMEX Euler scheme,
the second-order IMEX midpoint scheme, and our extrapo-
lation scheme for both examples. The two plots in the first
row illustrate the O(k) convergence of the IMEX Euler
scheme, the O(k?) convergence of the IMEX midpoint
scheme, and faster than polynomial convergence of our
extrapolation scheme. For the one-year double-barrier put
option, it takes our extrapolation scheme a total of 72 time
steps (in 0.05 seconds on a Dell Xeon 3.06 GHz PC) to
achieve our target accuracy of 107>, while it takes the
IMEX midpoint scheme 768 time steps (in 0.49 seconds),
and the IMEX Euler scheme about 1.3 million time steps
(in 873 seconds) to achieve the same accuracy. For the

Figure 2.
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one-year down-and-out call option, it takes the extrapola-
tion scheme a total of 110 time steps (in 0.49 seconds) to
achieve 2 x 107 accuracy, while it takes 1,536 steps for the
IMEX midpoint scheme (in 5.82 seconds) and about 5.24
millions steps (in 5.58 hours) for the IMEX Euler scheme
to achieve the same accuracy (note that computation times
for the down-and-out call are longer than for the double-
barrier call with the same number of time steps due to the
larger computational domain needed to accurately localize
the down-and-out call problem, which is originally posed
on the unbounded domain). The two plots in the second
row experimentally illustrate that our scheme exhibits error
decay O(exp(—cN'/?1n./)) in the number of time steps .V,
consistent with our discussion in §4. The basic step size
H =0.5 is sufficient to achieve our 1075 accuracy goal in
both examples.

To further illustrate the extrapolation scheme, an extrap-
olation tableau example is given in Table 2. Here, we con-
sider a three-month down-and-out at-the-money put option
in Kou’s model (S = K =100, T = 0.25 year). Consider
a target accuracy goal of 107, The benchmark price is
1.8595375 (computed with a fine enough finite-element
mesh and a large enough number of time steps). IMEX
Euler schemes with n;, =1 and n, =2 steps produce the
first two numbers in column 2 of Table 2 (7}, and T7,,,
respectively). Next, the value 7,, is produced by extrapola-
tion and the subdiagonal error estimate is computed (given
in the %€-column). Because the subdiagonal error estimate
is greater than 10~°, the IMEX Euler scheme with n; =3

Maximum norm pricing errors in Kou’s (2002) and Merton’s (1976) models: Time discretization.

1-year DOC in Merton’s model

1E—1
A
<>\“ \
_1E-2 \ A N
: o
® 1E-3 B
£ S N
> N K
E 4 L. NN
©
= <\>\ AN
1E-5 S X
\‘ \
110 © 1,536 5,242,880
1E-6 : : - : -

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Total number of time steps

1-year DOC in Merton’s model

1E-1
.QO

_1E-2
5 \-Q
@ 1E-3
€ 6
>
E 1E-4 72
©
=

1E-5 80

110
- . | | .
10 20 30 40 50 60

Sart(N) = Ln(N)



Feng and Linetsky: Pricing Options in Jump-Diffusion Models: An Extrapolation Approach

Operations Research 56(2), pp. 304-325, © 2008 INFORMS 321
Table 2. Extrapolation based on the IMEX Euler scheme.

n; Euler Extrapolation € Error

1 1.771739

2 1.881621 1.991503 1.1E-01 1.3E—-01
3 1.898934 1.933560 1.904588 2.9E-02 4.5E—-02
4 1.900516 1.905261 1.876963 1.867754 9.2E—-03 8.2E—-03
5 1.898484 1.890355 1.867995 1.862016 1.860582 1.4E-03 1.0E-03
6 1.895680 1.881658 1.864266 1.860537 1.859797 1.859640 1.6E—04 1.0E—04
7 1.892892 1.876169 1.862445 1.860017 1.859628 1.859560 1.859546 1.3E-05 8.8E—06
8 1.890342 1.872490 1.861452 1.859796 1.859574 1.859543 1.859537 1.859536 1.3E—06 2.0E—06

Notes. n;: number of IMEX Euler steps, €: subdiagonal error estimate. The column labeled Error gives the error between the approximation

and the benchmark solution.

steps is used to produce T;,. Next, the extrapolation algo-
rithm produces T3, and T35, and the next subdiagonal error
estimate is computed. We continue down the extrapolation
tableau until the subdiagonal error estimate is below 1073,
as shown in the last row of Table 2. We obtain the option
price within our accuracy goal of 107> in seven extrap-
olation stages with a total of ¥ =1+2+---4+8 =36
time steps. The actual errors between the computed and the
benchmark solution are given in the last column.

Figure 3 illustrates the valuation of Bermudan options.
Here, we consider a one-year monthly monitored put option
in Kou’s (2002) and Merton’s (1976) jump-diffusion mod-
els, T =1, Ny =12. The two plots in the first row show
the option value functions of the Bermudan options, as
well as the option payoff functions. The corresponding
European put option value functions are also plotted for
comparison. The two plots in the second row show the
O(h?) convergence of the finite-element spatial discretiza-
tion errors for both the European puts and Bermudan puts.
The two plots in the third row show the convergence of
the IMEX Euler, the IMEX midpoint, and the extrapola-
tion time-stepping schemes. In these plots, the step size
h is taken so that the spatial discretization error is about
1073, For the Bermudan put in Kou’s (2002) model, it takes
the extrapolation scheme only 252 time steps to achieve
3 x 1075 accuracy (in 1.34 seconds), while it takes the
second-order IMEX midpoint scheme 6,144 steps (in 28.67
seconds), and the first-order IMEX Euler scheme more than
3 million steps (in 3.36 hours) to achieve the same accu-
racy. Similarly, for the Bermudan put in Merton’s (1976)
model, it takes the extrapolation scheme 252 time steps (in
0.53 seconds) to achieve 2 x 107® accuracy in contrast to
7,680 steps for the IMEX midpoint scheme (in 12.09 sec-
onds) and 4.7 million steps for the IMEX Euler scheme (in
2.09 hours). As these results demonstrate, the extrapolation
method is also very efficient for Bermudan options in jump-
diffusion models. In the special case of Merton’s (1976)
jump-diffusion model, Broadie and Yamamoto’s (2005)
method based on the fast Gauss transform (FGT) is remark-
ably fast and accurate for the pricing of Bermudan options.
We have compared our numerical results with Broadie and
Yamamoto’s and found agreement to 107, In the special
case of Merton’s (1976) model, Broadie and Yamamoto’s

(2003) method is more efficient than our method, because it
uses analytical transition densities between exercise dates,
while we solve the ODE between exercise dates. However,
our method applies to general jump-diffusion models, while
the FGT method is restricted to the processes with transi-
tion densities given by sums of Gaussians.

Figure 4 shows the application of our method to the
diffusion-extended VG model. We consider a double-
barrier knock-out put option. The option value as a func-
tion of the underlying asset price is shown on the left. The
plot on the right shows the convergence of the three time
discretization schemes. While it takes 364 steps (in 1.59
seconds) for the extrapolation scheme to achieve 10~ accu-
racy in time discretization, it takes the second-order IMEX
midpoint scheme 8,192 steps (in 38.77 seconds) and the
IMEX Euler scheme 655,360 steps (in 2,979 seconds) to
achieve the same accuracy. As expected, our extrapolation
approach also performs well for the diffusion-extended VG
model with infinite activity jumps.

Figure 5 shows option pricing in the SVCJ model. We
consider a double-barrier put option and a down-and-out put
option in the SVCJ model, both with six months to expira-
tion. The two plots in the first row show the option prices as
functions of the underlying stock price and volatility. The
two plots in the second row verify the second-order con-
vergence of the finite-element spatial discretization. They
also show that using 1 x 1 Gaussian quadrature to compute
the jump matrix (an n x n Gaussian quadrature rule denotes
a tensor product of n-point Gaussian quadrature rules in
each of the two state variables) is sufficient to guarantee
the second-order accuracy of the finite-element discretiza-
tion. The 2 x 2 GQ rule improves the constant C in the
Ch? error estimate, without affecting the order. The two
plots in the third row show the convergence of the time
discretization schemes. The spatial step size is taken so that
the spatial discretization error is less than 2 x 10~*. Max-
imum norm errors of the IMEX Euler scheme, the IMEX
midpoint scheme, and the extrapolation scheme with the
basic step sizes H =T = 0.5 year are plotted. The extrap-
olation scheme is remarkably fast and accurate for this
two-dimensional application with bivariate jumps. It takes
only 66 time steps (in 55 seconds) to achieve 2 x 1073
accuracy in time discretization, while it takes the IMEX
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Figure 3. Bermudan put options in Kou’s (2002) and Merton’s (1976) jump-diffusion models.
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Figure 4. Double barrier knock-out puts in the diffusion extended variance gamma model.
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Figure 5. Option pricing in the SVCJ model.
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midpoint scheme 384 steps (in 137 seconds) to achieve the
same accuracy. Similarly, for the down-and-out put option,
it takes 55 steps for the extrapolation scheme (in 118 sec-
onds) to achieve 3 x 1075 accuracy in time, while it takes
the IMEX midpoint scheme 320 time steps (in 273 seconds)
to achieve the same accuracy. The first-order IMEX Euler
scheme is very slow and inefficient in this two-dimensional
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application. The last two plots experimentally illustrate the
O(exp(—cN'21InN)) error decay in the total number of
time steps N in the SVCJ model.

Table 3 presents sample prices for one-year double-bar-
rier knock-out puts, down-and-out puts, up-and-out puts in
Kou’s (2002) model (DBP-K, DOP-K, and UOP-K, respec-
tively), double-barrier knock-out calls, down-and-out calls,
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Table 3. Knock-out barrier and Bermudan option prices in one-dimensional and two-dimensional
jump-diffusion models.

S, =85 S, =90 S,=95  S,=100  S,=105  S,=110  S,=115
DBP-K 1.76406 1.90376 1.69610 1.37753 1.02413 0.66641 0.32168
DOP-K 1.76965 1.92246 1.74565 1.48584 1.22547 0.99347 0.79752
UOP-K 13.63634 10.41784 7.82736 5.75775 4.06491 2.61282 1.29118
DBC-M 1.01355 1.56686 1.92151 1.96473 1.69452 1.20480 0.61221
DOC-M 1.99844 3.76860 6.10282 8.97505 12.30970 16.02425 20.03950
UOC-M 1.16174 1.65662 1.97628 1.99620 1.71238 1.21482 0.61707
DBP-DEVG 1.16193 1.65360 1.77859 1.63371 1.31929 0.91583 0.47745
BerP-K 15.06947 11.36619 8.54786 6.41713 4.82248 3.63468 2.75053
BerP-M 15.29539 11.66226 8.76732 6.51385 4.79963 3.51690 2.56802
DBP-SVCJ 1.15530 1.65210 1.75470 1.59510 1.27580 0.87230 0.43580
DOP-SVCJ 1.16370 1.67710 1.81480 1.72020 1.50580 1.25130 1.00390

and up-and-out calls in Merton’s (1976) model (DBC-M,
DOC-M, and UOC-M, respectively), one-year double-
barrier knock-out puts (DBP-DEVG) in the diffusion-ex-
tended VG model, one-year Bermudan puts in Kou’s (2002)
and Merton’s (1976) models (BerP-K and BerP-M), and
six-month double-barrier knock-out puts and down-and-out
puts in the SVCJ model (DBP-SVCJ and DOP-SVCJ) for
seven different underlying asset prices. Model parameters
are given in Table 1. The prices are computed with 1073
accuracy for the one-dimensional models and 10~* accu-
racy for the SVCJ.

7. Conclusions

This paper proposes a new computational method for the
valuation of options in jump-diffusion models. The option
value function for European and barrier options satisfies
a PIDE. This PIDE is commonly integrated in time by
IMEX time discretization schemes, where the differential
(diffusion) term is treated implicitly, while the integral
(jump) term is treated explicitly. In particular, the popular
IMEX Euler scheme is first-order accurate. Second-order
accuracy can be achieved by using the IMEX midpoint
scheme. In contrast to the above approaches, we pro-
pose a new high-order time discretization scheme for the
PIDE based on the extrapolation approach to the solu-
tion of ODEs, that also treats the diffusion term implic-
itly and the jump term explicitly. The scheme is simple
to implement, can be added to any existing PIDE solver
based on the IMEX Euler scheme, and is remarkably fast
and accurate. We demonstrate our approach on the exam-
ples of Merton’s (1976) and Kou’s (2002) jump-diffusion
models, the diffusion-extended VG model, as well as the
two-dimensional Duffie-Pan-Singleton model with corre-
lated and contemporaneous jumps in the asset return and in
volatility. By way of example, pricing a one-year double-
barrier option in Kou’s (2002) jump-diffusion model, our
extrapolation scheme attains accuracy of 107> in 72 time
steps (in 0.05 seconds). In contrast, it takes the first-
order IMEX FEuler scheme more than 1.3 million time
steps (in 873 seconds) and the second-order IMEX mid-
point scheme 768 time steps (in 0.49 seconds) to attain

the same accuracy. Combining simplicity of implemen-
tation and remarkable gains in computational efficiency,
we expect this method to be very attractive to financial
engineers.

8. Electronic Companion

An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnote

1. Note that we include the convection term AU in the
PIDE in the definition of the operator &/ to be treated
implicitly, so only the integral is included in the definition
of the operator %3 to be treated explicitly. The resulting
IMEX scheme is proved to be unconditionally stable by
d’Halluin et al. (2005). This is in contrast with the IMEX
scheme in Zhang (1997), who treats the convection term
explicitly as well, resulting in the stability condition of the
form At < C with some constant C.
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