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BLACK’S MODEL OF INTEREST RATES AS OPTIONS, EIGENFUNCTION
EXPANSIONS AND JAPANESE INTEREST RATES
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Black’s (1995) model of interest rates as options assumes that there is a shadow
instantaneous interest rate that can become negative, while the nominal instantaneous
interest rate is a positive part of the shadow rate due to the option to convert to
currency. As a result of this currency option, all term rates are strictly positive. A
similar model was independently discussed by Rogers (1995). When the shadow rate
is modeled as a diffusion, we interpret the zero-coupon bond as a Laplace transform
of the area functional of the underlying shadow rate diffusion (evaluated at the unit
value of the transform parameter). Using the method of eigenfunction expansions, we
derive analytical solutions for zero-coupon bonds and bond options under the Vasicek
and shifted CIR processes for the shadow rate. This class of models can be used to
model low interest rate regimes. As an illustration, we calibrate the model with the
Vasicek shadow rate to the Japanese Government Bond data and show that the model
provides an excellent fit to the Japanese term structure. The current implied value of
the instantaneous shadow rate in Japan is negative.

KEY WORDS: interest rate models, Vasicek model, CIR model, bonds, bond options, eigenfunction
expansion, area functional

1. INTRODUCTION

So long as investors can hold currency, nominal interest rates must remain nonnegative
to preclude arbitrage. In practice, when interest rate derivatives are priced, Gaussian
interest rate models starting with that of Vasicek (1977) are commonly employed that
allow negative rates. It has often been claimed that there is no need to worry if the
probability of negative rates is small. While that is true in many cases, Rogers (1996) has
shown that some derivatives’ prices are extremely sensitive to the possibility of negative
rates. For such derivatives, the prices that the Gaussian models predict can be absurd.
An alternative class of models employs diffusion processes for the nominal instanta-
neous interest rate (short rate) with the property that zero is an unattainable boundary.
The dynamics of the short rate are restricted to the interval (0, co) and the short rate
can never reach zero. The Brennan and Schwartz (1979) model and the popular in prac-
tice Black and Karasinski (1991) model are prominent examples. These models have a
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“lognormal” instantaneous short-rate volatility and a mean-reverting drift. A common
feature of such models is that the volatility falls off rapidly as the rate approaches zero,
thus “switching off” the diffusion term and allowing the mean-reverting drift to pull the
process away from zero, making zero unattainable.

The square-root Cox, Ingersoll, and Ross (1985; hereafter CIR) model is a borderline
case. When the mean-reverting drift is large enough relative to the volatility, the rate can-
not reach zero. Otherwise, the rate can reach zero, and one must decide on the boundary
condition at zero. More precisely, if the Feller (1951) condition is satisfied, 28 > o2, zero
is an unattainable entrance boundary for the process (see Section 5). Otherwise, it is an
attainable regular boundary, and a boundary condition must be specified. In both cases,
the short-rate volatility falls off as the square root as the short rate falls toward zero.

Such volatility structures that vanish as the short rate tends to zero contradict the
accumulated empirical evidence. There have been several periods in economic history
when short-term rates have fallen to zero. In the United States, this happened in the
1930s. More recently, since the mid-1990s short-term interest rates in Japan have stayed
below 1%, at times reaching zero. However, even though the short rates have stayed near
zero, volatility has remained quite high throughout the period (Goldstein and Keirstead
1997). Obviously, both the Gaussian models that allow the rates to become negative and
the lognormal or square-root models with zero an unattainable boundary and vanishing
volatility are inadequate in the low interest rate regime.

Existing multifactor term structure models do not provide a solution to this problem
either. To be specific, take the popular affine family of models (Dai and Singleton 2000;
Duffie and Kan 1996) in which the instantaneous short rate is an affine function of
an N-dimensional state vector of factors assumed to follow an N-dimensional affine
diffusion process. To guarantee the nonnegativity of the short rate, all of the factors
should be restricted to take nonnegative values. According to the classification of Dai
and Singleton, only the subfamily A () of correlated CIR models meets this restriction
(the subfamilies 4,,(N) with m < N have N — m factors allowed to take negative values).
The subfamily 4 y(N) contains multifactor generalizations of the CIR model. All of the
factors as well as the short rate stay strictly positive, and the volatilities of all factors
vanish as the factors fall toward zero.

Thus, a qualitatively different class of interest rate models is needed to model low
interest rate regimes. One would like an interest rate model in which the short rate stays
nonnegative (although it could become zero) and at the same time has nonvanishing
volatility at low rates. Black (1995) put forward the following model of interest rates
as options. Black argued that the short rate cannot become negative because currency
is an option; when an instrument has a negative rate, we can choose currency instead.
Therefore, we can treat the short rate itself as an option: we can choose an underlying
process that can take negative values and simply replace all the negative values with zeros
(take a positive part). We still have a one-factor process: either the short rate (when the
underlying process is positive or zero) or what the short rate would be without the currency
option (when the underlying process is negative). Black calls this process the shadow short
rate. In such a model, the shadow short rate can become negative, the nominal short rate
is a positive part of the shadow rate, and all term rates are strictly positive. A similar
model was independently discussed by Rogers (1995).

In this paper we present analytical solutions for zero-coupon bonds and bond options
in this model. When the shadow rate is modeled as a scalar diffusion, we interpret the
zero-coupon bond as a Laplace transform of the area functional of the underlying shadow
rate diffusion (evaluated at the unit value of the transform parameter). Using the method
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of eigenfunction expansions (Davydov and Linetsky 2003; Linetsky 2002a, 2002b), we
derive analytical solutions for zero-coupon bonds and bond options under the Vasicek
and shifted CIR processes for the shadow rate. As the shadow rate approaches zero, the
term rate volatilities do not vanish. This class of models can be used to model low interest
rate regimes.

Both Black (1995) and Rogers (1995, 1996) also discussed the model where the short
rate is a diffusion on [0, co) with a reflecting boundary condition at zero. Black (1995)
criticized such models on economic grounds, favoring the model of interest rates as
options. Models with reflecting boundary conditions at zero have been further studied
in an interesting paper by Goldstein and Keirstead (1997) who obtained solutions for
zero-coupon bond prices in terms of eigenfunction expansions for some specifications
of the process. These authors argued that Black’s model of interest rates as options has
the disadvantage that it is analytically intractable, whereas the model with a reflecting
boundary at zero admits analytical solutions for zero-coupon bonds and European-style
interest rate derivatives. In this paper we show that, in fact, Black’s model of interest
rates as options is as fully analytically tractable as the reflecting boundary model, and we
obtain analytical solutions both for zero-coupon bonds and bond options under several
specifications for the shadow rate process. Thus, there is no need to restrict oneself to the
model with the reflecting boundary at zero in order to retain analytical tractability.

The remainder of the paper is organized as follows. In Section 2 we describe the model.
The shadow rate is modeled as a diffusion that is allowed to become negative. The short
rate is a positive part of this process. To facilitate analytical solutions for bond options, we
also impose an additional assumption that the spectrum of the infinitesimal generator of
the pricing semigroup is purely discrete. We interpret the zero-coupon bond in this model
as a Laplace transform of the area functional (evaluated at the unit value of the transform
parameter). In Section 3 we outline the eigenfunction expansion approach to the problem
of pricing bonds and bond options in this model. In Section 4 we specify the Vasicek
process for the shadow rate and find explicit solutions for zero-coupon bonds and bond
options in terms of eigenfunction expansions. In Section 5 we obtain analytical solutions
for the shifted CIR process for the shadow rate. Computational results are presented in
Section 6. For longer times to maturity the eigenfunction expansions converge fast, with
several terms producing values accurate to five or six decimals. In Section 7 we calibrate
the model with the Vasicek shadow rate process to the Japanese Government Bond (JGB)
data and show that the model provides an excellent fit to the Japanese term structure.
Section 8 concludes the paper. The Appendix contains the proofs.

2. THE MODEL
2.1. The Shadow Short-Rate Process

In this paper we take an equivalent martingale measure Q as given. We assume that,
under Q, the shadow interest rate follows a one-dimensional, regular time-homogeneous
diffusion process {X;, t > 0} taking values in some interval / with the endpoints / and
r,—oo <1 <0 < r < oo, and with the infinitesimal generator

2.1 (GNHx) = %UZ(X)f”(X) +u®)f(x),  xed.r),

acting on functions on / with appropriate regularity and boundary conditions. We assume
that the diffusion and drift parameters satisfy the following assumptions: o, ¢’, o”, u,
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and p' are continuous' in the open interval (/, r) and o (x) > 0 in (/, r). Furthermore, we
assume that the speed density of the diffusion satisfies the following conditions?:

(2.2) / m(x)dx < o0, / m(x)dx < oo, ee(,r).
1 €
The scale and speed densities s and m of the diffusion X are defined by?
2
2.3) s(x) = exp {— / p;(y) dy}
()

4 () = ——

. m(x) := TR

Conditions (2.2) guarantee that the diffusion has a stationary density (see Karlin and
Taylor 1981, pp. 241-242):

m(x)

[ m(y)dy

Under conditions (2.2) the left (/) and right (r) endpoints can be regular, entrance, or
nonattracting natural boundaries.* To be specific, consider the left endpoint /. Under
condition (2.2) at /, it is a regular boundary if the following integral is finite:

(2.5 w(x) =

(2.6) /e s(x)dx < o0, ee(l,r).
!

Otherwise, it is either entrance or nonattracting natural. Define a scale function (x¢ € (/, r)
can be selected arbitrarily; the scale function is defined up to an additive constant):

(2.7) S(x) := / s(y)dy, xp € (,r).

X0
If condition (2.2) is satisfied and the integral in equation (2.6) is infinite, then / is entrance
if the following integral is finite:

(2.8) /IE S(x)m(x)dx < oo, ee(l,r).

It is nonattracting natural if the integral in equation (2.8) is infinite. Similar classification
results hold for the right endpoint r. We assume that infinite boundaries are unattainable.
In this paper we always make regular boundaries instantaneously reflecting. Regular
reflecting boundaries are included in the state space /. Entrance and natural boundaries
are not included in 7 (e.g., if / is regular reflecting and r is natural, then I = [/, r)).

' We will need these smoothness assumptions in order to transform to the Liouville normal form in
Section 3.1.

2 These conditions are standard in the interest rate literature (e.g., Conley, Hansen, Luttmer, and
Scheinkman 1997).

3 Our definition of the speed density coincides with those of Karatzas and Shreve (1991, p. 343) and
Borodin and Salminen (1996, p. 17) and differs from Karlin and Taylor (1981, p. 194) who do not include 2
in the definition.

4 For Feller’s boundary classification for one-dimensional diffusions see Karlin and Taylor (1981,
Chap. 15) and Borodin and Salminen (1996, Chap. 2).
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2.2. The Nominal Short-Rate Process

Following Black (1995) and Rogers (1995), we assume that the nominal instantaneous
interest rate (the short rate) {r;, t > 0} is a positive part of the shadow rate:

(2.9) ro= XF

>

t>0.

The left boundary —oo </ < 0 is either —oo or a fixed nonpositive real. In the limiting
case [ = 0 the shadow rate coincides with the nominal rate and is always nonnegative.
The right endpoint 0 < r < 400 is either a positive real or +ooc.

2.3. Zero-Coupon Bonds and Bond Options

A zero-coupon bond pays one dollar at a prespecified time 7" > 0. Then the price (present
value) of the zero-coupon bond at some time 0 < ¢ < T is given by the risk-neutral
expectation

(2.10) P(x,t,T) = E, . [efffrudu] —E. [e* I x;du]’

where E, .[-]= E[-| X; = x] (for t =0 we drop the 0 in Ej, and write E,). Since the
shadow rate process is time homogeneous, we have

Q.11)  P(x,t,T) = P(x,0,7) = Ex [e*-ﬂf XN"] = P(x,7), ti=T-—1.
The corresponding yield-to-maturity R(x, t) is defined as usual:

1
(2.12) R(x, 1) := ——1In P(x, 1), T > 0.

T

Call and put options with the expiration date ¢ and strike price K written on the
zero-coupon bond with maturity 7 > ¢ deliver the payoffs at time ¢:

(213) (P(X}s ZsT)_K)+v (K_P(X;’ta T))+,

respectively. Caplets and floorlets in interest rate caps and floors can be represented
as options on zero-coupon bonds (Hull 2000 and James and Weber 2000). Since we
are working with one-factor models, options on coupon-bearing bonds and swaptions
can be expressed as portfolios of options on zero-coupon bonds using the approach of
Jamshidian (1989). We thus limit ourselves to options on zero-coupon bonds.

2.4. Model Interpretation and Hedging

Since the short rate is always nonnegative, r, > 0, the zero-coupon bond prices P(x, )
given by equation (2.11) are always strictly less than one for any t > 0. Moreover, for
each fixed x the zero-coupon bond pricing function {P(x, t), T > 0} is strictly decreasing
on [0, co) with P(x,0) = 1 and all term rates (or yields) R(x, t) as well as all forward
rates f(x, 1), f(x,7) = — %lnP(x, 7) (Heath, Jarrow, and Morton 1992) are strictly pos-
itive for all T > 0. This ensures that the model is free from the arbitrage opportunities
present in models that admit negative rates, as discussed in the Introduction.

We stress that the underlying fundamental economic factor (state variable) in this
model is the shadow rate x, not the short rate r: the model is Markovian in the shadow
rate and not in the short rate. For hedging purposes, one computes sensitivities of inter-
est rate derivatives to the shadow rate x. Strictly speaking, there is no sense in talking
about sensitivities with respect to the short rate r since the short rate is not a Markovian
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state variable in this model (value functions of interest rate derivatives in this model are
functions of x). When the shadow rate is strictly positive, the short rate is equal to the
shadow rate, and one can interpret sensitivities of interest rate derivatives to the shadow
rate computed at positive values of the latter as sensitivities to the short rate. However,
when the shadow rate is nonpositive, it makes sense to talk about sensitivities of interest
rate derivatives to the shadow rate, while sensitivities to the short rate are undefined. If
one selects a zero-coupon bond with some maturity 7 > 0 as a hedging instrument in
this model (since this is a single-factor model, one hedging instrument is sufficient), at
time ¢ < T any other interest rate derivative }” can be hedged with

AR
~ Px, 1, T)

units of the zero-coupon bond, where V', and P, are the partials with respect to the
shadow rate of the interest rate derivative value function and the zero-coupon bond,
respectively.

We also note that, since for any fixed t > 0 the term rate (yield) R; := R(x, ) is
a positive and strictly increasing function of the shadow rate x, one can uniquely in-
vert this one-to-one relationship to express the shadow rate x as a function of the term
rate R, for any fixed T > 0. Then one can compute sensitivities of interest rate deriva-
tives to the term rate R;. In contrast, the relationship between the shadow rate and the
short rate is not one-to-one (the short rate is not a sufficient statistic of the state in this
model).

2.5. Area Functionals of Scalar Diffusions

We note that the zero-coupon bond price (2.11) has the form of the Laplace transform
(evaluated at the unit value of the transform parameter) of an area functional of the
shadow rate diffusion:

t
(2.14) 4 ::/ Xtdu, 1>0.
0

The area functional measures the area below the positive part of a sample path of the
diffusion process up to time ¢. Perman and Wellner (1996) studied area functionals of
Brownian motion. In our application we are interested in area functionals of one-
dimensional diffusions with stationary densities. In particular, in this paper we will com-
pute the zero-coupon bond price (Laplace transform evaluated at the unit value of the
transform parameter)

(2.15) P(x,1) = Eye” "]

and the put option price

(2.16) E[e *(K - P(X,, T — )]

The call option price is obtained from the put-call parity for bond options:

(2.17) Ede " (P(X,, T—1)— K)*] = Ex[e""(K — P(X,, T — 1))*]
+ P(x, T) — KP(x,1).

We thus limit ourselves to put options on zero-coupon bonds.
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REMARK 2.1. The area functional joins several other additive functionals important
in mathematical finance. Among them are averages and exponential Brownian functionals
(e.g., Dufresne 2000, 2001; Geman and Yor 1993; Linetsky 2001; Yor 2001) local times
(e.g., Carr and Jarrow 1990), and occupation times (e.g., Chesney et al. 1997; Davydov
and Linetsky 2002; Linetsky 1998, 1999). For Brownian motion with drift, the area
functional has already appeared in finance in connection with the valuation of executive
stock options in Carr and Linetsky (2000).

3. THE EIGENFUNCTION EXPANSION APPROACH

To compute prices of zero-coupon bonds and interest rate derivatives we employ the
spectral expansion approach described in detail in Linetsky (2002b). In this section we
extensively use the results in Linetsky (2002b) and refer the reader to that paper for
details, proofs, and further references.

3.1. The General Framework

Let H := L?*(1, m) be the Hilbert space of real-valued functions square-integrable on
I with the speed density m(x) and with the inner product

@3.1) (1191 = [ S

Let {P;, t > 0} be the self-adjoint contraction semigroup in H associated with the shadow
rate process {X;, t > 0},

(3.2) (Pi )(x) == E[f(X)], SeH, 1>0, xel,

and let G be its infinitesimal generator,

1
(3.3) GNx) = EGZ(X)f”(X) +u® /' (x),  xed.r).

If an endpoint e e {/,r} is regular instantaneously reflecting, then (G f)(e) :=
lim,_,.(G f)(x). The generator can be expressed in terms of the scale and speed densities:

(4 Gnw=5(43)-

Its domain D(G)is D(G) :={f e H: f, [ € AC,,.(I),G f € H, boundary conditions at
land r}, where ACj,.(I) is the space of functions absolutely continuous over each compact
subinterval of 7, and the appropriate boundary conditions at / and r are:

e e
(3.5) me ~ % Iy T

0.

The infinitesimal generator G is self-adjoint and nonpositive in H. We are interested in its
spectrum and the associated spectral representation for the transition density p(#; x, »),

(3.6) mﬁwzjvwmmw@.

Furthermore, let {P;, 7 > 0} be the self-adjoint contraction semigroup (pricing semi-
group) of discounted conditional expectation operators (pricing or present value operators)
inH,

(3.7 (P ) = Efe™™ (X)), SeH, 120, xel,
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and let G be its infinitesimal generator,
(3.8) G=G—x".

We can view G as the infinitesimal generator of a diffusion process X with the killing
rate xT. Feller’s boundary classification can be extended to diffusions with killing (see
Borodin and Salminen 1996, pp. 14-15). The nature of the endpoint / is not changed since
the killing rate x* vanishes below zero. If r < +o00, the killing rate is continuous on the
closed interval [0, r]. Hence, adding the killing does not change the nature of the finite right
endpoint and D(G) = D(G) (see Karlin and Taylor 1981, Thm. 12.3, p. 314). If r = +o00 is
a natural boundary for the diffusion without killing, it remains natural for the diffusion
with killing. If r = 400 is an entrance boundary for the diffusion without killing, it can
either remain entrance or become natural for the diffusion with killing. If r = 400, then
the domain D(G)is D(G) :={f € H: f, [ € ACi(I), G f € H, boundary conditions at
/ and r}. The boundary conditions at / and r remain the same as for the diffusion without
killing (equation (3.5)).

The operator G is self-adjoint and nonpositive in . We are interested in its spectrum
and the associated spectral representation for the state-price density q(t; x, y),

(3.9) P f)x) = /l TV x. ) dy.

REMARK 3.1. Note that if we do not take the positive part and allow the nominal rate
to become negative, the resulting pricing semigroup is, in general, no longer a contraction
semigroup, and its infinitesimal generator is, in general, no longer nonpositive. This may
result in absurd economic consequences, as we will see later in the Vasicek example.

Consider the two associated Sturm-Liouville (SL) ordinary differential equations:

(3.10) —(Gu)(x) = ru(x), xe(l,r)
and
(3.11) —(Qu)(x) = —(Gu)(x) + xTu(x) = ru(x), xe(,r)

with the boundary conditions (3.5). We are interested in spectral expansions in H asso-
ciated with these Sturm-Liouville problems.
More generally, consider a SL equation® with A € C and x € (/, r):

1 u'(x)
m(x) \ s(x)
with some r(x) continuous and nonnegative on (/, r). The oscillatory/nonoscillatory clas-

sification based on Sturm’s theory of oscillations of solutions is of fundamental impor-
tance in determining the qualitative nature of the spectrum of the SL problem. For a

(3.12) ) +r(ux) = rux),

3> See Dunford and Schwartz (1963), Glazman (1965), Levitan and Sargsjan (1975), Weidmann (1987),
and a recent survey by Fulton, Pruess, and Xie (1996) for the Sturm-Liouville theory. Appli-
cations of spectral theory to diffusion processes were initiated by McKean (1956) (see also
Ito and McKean 1974, Sect. 4.11, and Langer and Schenk 1990). Applications to derivatives pric-
ing can be found in Beaglehole (1991), Davydov and Linetsky (2003), Goldstein and Keirstead (1997),
Lewis (1994, 1998, 2000), Linetsky (2001, 2002a, 2002b, 2003), and Lipton (2001). Applications to estima-
tion of diffusion processes in econometrics can be found in Hansen, Scheinkman, and Touzi (1998). In this
paper we follow Linetsky (2002b).



BLACK’S MODEL OF INTEREST RATES AS OPTIONS 57

given real A, equation (3.12) is oscillatory at an endpoint e if and only if every solu-
tion has infinitely many zeros clustering at e. Otherwise it is called nonoscillatory at e.
This classification is mutually exclusive for a fixed A, but can vary with A. For equation
(3.12), there are two distinct possibilities at each endpoint. Let e € {/, r} be an endpoint
of equation (3.12). Then e belongs to one and only one of the following two cases: (i)
(NONOSC) Equation (3.12) is nonoscillatory at e for all real A. Correspondingly, e is
called nonoscillatory or NONOSC for brevity. (ii) (O-NO) There exists a real number
A > 0 such that equation (3.12) is oscillatory at e for all A > A and nonoscillatory at
e for all A < A. Correspondingly, e is called O-NO with cutoff A. Equation (3.12) can
be either oscillatory or nonoscillatory at e for A = A > 0. It is always nonoscillatory for
A=0.

If a boundary for diffusion with killing is regular, exit, or entrance in Feller’s classifi-
cation, it is NONOSC for the Sturm-Liouville equation associated with its infinitesimal
generator. Feller’s natural boundaries can be either NONOSC or O-NO with nonnegative
cutoff A > 0. If both endpoints are NONOSC, then the spectrum of the SL problem is
simple, nonnegative, and purely discrete. If one or both endpoints are O-NO, then there
is some nonempty continuous spectrum and the associated eigenfunction expansion in H
includes an integral with respect to the continuous part of the spectral measure. As we
will see in Section 3.2, this complicates the pricing of bond options. Since in this paper we
are interested in pricing both bonds and bond options, we limit ourselves to such shadow
rate diffusions that the SL problem (3.11) associated with the infinitesimal generator G
with the diffusion (killing) rate x* has a purely discrete spectrum. Both the Vasicek and
shifted CIR processes of Sections 4 and 5 fall in this category. Thus, we make an additional
assumption that both boundaries are NONOSC for the SL equation (3.11).

Generally, to determine when an endpoint of equation (3.12) is NONOSC or O-NO
with cutoff A, it is convenient to transform the SL equation to the Liouville normal form
(LNF). The following smoothness assumption is sufficient to be able to perform the
Liouville transform: o’(x), o”(x), and u'(x) exist and are continuous on (/, r). Fix some
xo € (I, r) and transform the independent and dependent variables as follows:

g
(.13) y= ﬁ/ ?;
(3.14) 25u(x(y)

O = 0N

where x = x(y) is the inverse of the transformation y = y(x). Then the function v(y)
satisfies the SL equation in the Liouville normal form (the coefficient in front of the
second derivative is constant and equal to (negative) one and the first-derivative term
is absent; the SL equation in the Liouville normal form is called the one-dimensional
Schridinger equation with potential function Q(y)):

(3.15) ="+ 0(y)y = 1v, y € (), y(r)),
where the potential function Q(y) is given by
(3.16) O(y) = V(x(»)),
where
12(x)

w9 ).
o(x)

1 1 1
(3.17) V(x):= g(a’(x))2 - Za(x)o”(x) + + 5,L’(x) -

202(x)



58 VIATCHESLAV GOROVOI AND VADIM LINETSKY

The oscillatory/nonoscillatory classification remains invariant under the Liouville
transform—that is, equation (3.12) is nonoscillatory at e € {/, r} for a particular A if and
only if equation (3.15) is nonoscillatory at y(e) for that A. The oscillatory/nonoscillatory
classification of equation (3.12) depends on the behavior of the potential function near
the endpoints. We cite the following classification result (see Linetsky (2002b for the proof
and relevant references).

ProPOSITION 3.1 (NONOSC/O-NO Classification). Let e € {/, r} be an endpoint of
the SL equation (3.12) and let V(x) be the function defined by (3.17). Assume that the
limit lim,_, . V(x) exists (it is allowed to be infinite).

(1) Ifeis transformed into a finite endpoint by the Liouville transform—that is, y(e) =
V2 [¢ 4= s finite—then e is NONOSC.

Xy o(2)
(i1) Suppose e is transformed into —oo or +o0 by the Liouville transform. If

(3.18) £1_r)r} V(x) = 400,
then e is NONOSC. If for some finite A

(3.19) lrl_rg V(x) = A,
then e is O-NO with cutoff A.

Since in this paper we wish to limit ourselves to shadow rate diffusions for which the
pricing semigroup has a purely discrete spectrum, we assume that if e € {/, r} is trans-
formed into an infinite endpoint by the Liouville transform, then the diffusion and drift
parameters o (x) and p(x) are such that lim,_,, V(x) = +oo recall that (r(x) = x* in this
case). Then the spectral representation of the state-price density is®:

[o¢]
(3.20) q(t: %, ) =m() Y e 9u(x), @u(y), x,yel t>0,
n=0
where {1,}52,,0 <Xo < A; < ---, lim,10h, = 00, are the eigenvalues and {p,(x)}72, are

the corresponding eigenfunctions of the Sturm-Liouville problem (3.11) normalized so
that ||g,||> = 1. The eigenfunctions form a complete, orthonormal basis in the Hilbert
space H. The ¢,(x) are also eigenfunctions of the pricing operator:

(3.21) (ﬁl‘pn)(x) = Ex[e_Alwn(/Yr)] = e_)mt‘/)n(x)a xel t>0.

That is, the present value at time zero of the payoff ¢,(X;) paid at time 7> 0 is
just e ¢, (x), where x is the initial value of the state variable (shadow rate) at time
zero. The corresponding contingent claims with eigenpayoffs ¢, are called eigensecurities
in the terminology of Davydov and Linetsky (2003).

Now consider some payoff f € H to be paid at time ¢ > 0. We have the following
eigenfunction expansion:

(3.22) [ =) w0, e =( )
n=0

6 In Linetsky (2002b) we label the eigenvalues A, starting from n = 1. Here, for future convenience in
Sections 4 and 5, we label the eigenvalues starting from n = 0.
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the Parseval equality holds, || /1> = Yo7 ¢2, and convergence is in the norm of the Hilbert
space. For the present value of any payoff f € H we have the associated eigenfunction
expansion:

(3.23) (P /)(x) = Ede™ " f(X))] = i e M eu(x),  xel1=0.
n=0

REMARK 3.2. Note that it is possible that the spectrum of G contains some nonempty
continuous spectrum, while the spectrum of G is purely discrete. Brennan and Schwartz’s
(1979) model provides such an example. The negative of the infinitesimal generator of the
diffusion dX, = x(6 — X;)dt + o X,dB, on (0, co) with positive parameters «, 6, and o has
a continuous spectrum above A = #(K — 02/2)? plus a finite number of nonnegative
discrete eigenvalues below A. However, the negative of the infinitesimal generator of the
pricing semigroup, —G = —G + x, that includes discounting (killing) has a purely discrete
positive spectrum.

3.2. Pricing Zero-Coupon Bonds and Bond Options

To price zero-coupon bonds, consider constant payoffs. Due to conditions (2.2), con-
stants are in the Hilbert space H, therefore the above analysis applies and we have an
eigenfunction expansion for the zero-coupon bond price:

(3.24) P(x,1) = E[e*] = i cne” " (),
n=0
(3.25) = /r @n(X)m(x) dx.
/

Due to the factors e

expansion converges.

! the longer the time to maturity, the faster the eigenfunction

REMARK 3.3. From (3.24) we have the following asymptotics for large times to
maturity:

1
(3.26) lim R(x, 7) = lim (—— In P(x, z)) = > 0.
ttoo ttoo t

As time to maturity increses, the yield curve flattens out and approaches the principal
eigenvalue Ao > 0 (see Lewis 1994, 1998 for general discussions along these lines, as
well as some interesting examples). In Black’s model of interest rates as options, the
principal eigenvalue is guaranteed to be strictly positive. However, in models that allow
negative nominal rates the principal eigenvalue can, in general, be negative. This can lead
to absurd economic consequences. As time to maturity increases, the zero-coupon bond
price (discount factor) blows up to infinity as the yield curve flattens out and approaches a
negative asymptotic yield. We will see this phenomenon in the Vasicek model in Section 4.

We now turn to the pricing of bond options.

PROPOSITION 3.2.  The price of a put option expiring at time t > 0 written on a zero-
coupon bond maturing at T > t has the eigenfunction expansion

(3.27) EJfe (K — P(X,, T—10)"] = ipn(f)e””’wn(X)
n=0
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with coefficients
o0
(3.28) Pu(t) = KAy =Y cuBume ™", 1:=T-1,
m=0

where ¢, are the coefficients of the zero-coupon bond expansion (3.25),

629 A= [ em@dx Bui= [ e@eemeodx
Xx* Xx*

and x* is the unique root of the equation (the zero-coupon bond price P(x, t) has the

eigenfunction expansion (3.24)):

(3.30) K— P(x*,T—1)=0.

Proof. See the Appendix.

The longer the time to option expiration ¢ and the longer the time between the option
expiration and the maturity of the underlying bond t = T — ¢, the faster the eigenfunc-
tion expansion (3.27-3.28) converges (due to the presence of the factors e~ in (3.27)
and e~ in (3.28)).

REMARK 3.4. Note that if there is some nonempty continuous spectrum, the eigen-
function expansion (3.24) for the bond price includes an integral in place of the sum. Then
the eigenfunction expansion (3.27-3.28) for the bond option includes a double integral
in place of the sums in (3.27) and (3.28). This double integral has to be evaluated numer-
ically. To avoid these computational complications, in this paper we restrict ourselves to
shadow rate processes that lead to purely discrete spectra for the pricing semigroup.

3.3. Determining Eigenvalues and Eigenfunctions

The problem of pricing contingent claims is now reduced to the problem of finding
eigenvalues 1, and eigenfunctions ¢, of the Sturm-Liouville problem (3.11). We assume
that equation (3.11) is nonoscillatory at / and r for all real A to guarantee purely discrete
spectrum.

PROPOSITION 3.3. Suppose —oo <[ <0 <r < 4o0. Let Y(x), xe€ (/,0], L € C, be
the unique (up to a multiple independent of x) solution of the ODE (3.11) on the interval
(1, 0],

(3.31) —%oz(x)u”(x) — (X' (x) = ru(x), x € (L, 0],
such that
(3.32) [ wrmax < o
and
(x
(3.33) lgrll ﬁ’}i)) =0
Sor each & € C, and ;(x) and ¢ (x) = % are continuous in x and X in (I, 0] x C and

entire in A for each fixed x € (I, 0].
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Let ¢5(x), x €[0,r), » € C, be the unique (up to a multiple independent of x) solution
of the ODE (3.11) on the interval [0, r),

(3.34) —%az(x)u”(x) — (X' (x) + xu(x) = Au(x), x € (0,r],
such that
(3.35) /" |5 (x)]*m(x) dx < 00
0
and
(X))
(3.36) l‘gl;l o 0

for each » € C, and ¢5(x) and ¢, (x) = % are continuous in x and X\ in [0,r) x C and
entire in A for each fixed x € [0, r).
Define a function of the complex variable A.
1
s(0)
It is an entire function of ) with all of its zeros simple and located on the positive real

half-line. The eigenvalues 0 < Ly < A < - - of the problem (3.11) can be identified with
(positive, simple) roots of the equation

(3.37) wt) == —=(¥(0)¢% (0) — $2(0)¥5(0)).

(3.38) oo
and the corresponding continuous eigenfunctions with continuous first derivatives and nor-
malized so that |\g,|)* = 1 are:
i (0

Aflﬂ;j, ()0) Vs, (%), l<x<0
(3.39) o) 0 |

Aq/f)(};’x(,, ()0) ¢)Ln (x)7 0 S xX<r
where

dw())

3.40 A |
(3.40) ) 0|

Proof. See the Appendix.

Thus, combining the results of Sections 3.2 and 3.3, we have expressed both the bond
and bond option pricing formulas in terms of the solutions ¥, (x) and ¢, (x) of the ODEs
(3.31) and (3.34) in the intervals (/, 0] and [0, r), respectively.

For comparison, we now provide the corresponding results for the reflecting boundary
model. This model assumes that the short rate follows a diffusion process on [0, r) with
the infinitesimal generator (2.1) and instantaneously reflecting boundary at zero. Zero-
coupon bonds and bond options are given by the eigenfunction expansions (3.24) and
(3.27-3.28) with eigenvalues and eigenfunctions described in the following proposition.

PROPOSITION 3.4. Let ¢,(x) be as in Proposition 3.3. Then the eigenvalues 0 < Ay <
A < --- can be identified with (positive, simple) roots of the equation

¢;(0) =0,
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and the corresponding continuous eigenfunctions with continuous first derivatives and nor-

malized so that ||@,||> = 1 are
$5.,(x) de;(0)
On(x) = ———, x€[0,r), where A, = —— .
RV, A, ¢)~n (0) dx A=Ay

Proof. See the Appendix.

REMARK 3.5. In the finance literature it is sometimes assumed that to normalize
eigenfunctions one has to start with some nonnormalized eigenfunctions ¢,, compute
the norms by numerical integration, [|@,[I* = ;" $?(x)m(x) dx, and then normalize the
eigenfunctions ¢,(x) = @,(x)/||@.]. In fact, the eigenfunction norms can be expressed
analytically and no numerical integration is necessary. The eigenfunctions in Propositions
3.3 and 3.4 are normalized. See Linetsky (2002b) for details.

4. THE VASICEK PROCESS FOR THE SHADOW RATE

Our first example is the Vasicek (1977) or Ornstein-Uhlenbeck process for the shadow
rate:

4.1 dX, =k — X,)dt + odB,, Xo = x,

where 6 > 0 is the long-run level of the shadow rate, ¥ > 0 is the rate of mean reversion
toward the long-run level, and o > 0 is the volatility parameter. When the process is
below 6, the positive drift pulls it back up toward 6. When the process is above 6, the
negative drift pulls it back down toward 6. For this process / = —co and r = +o00. The
scale and speed densities are

(0—x) 2 k-9
s

4.2) s(x)y=e 7, m(x) = O—e 2,

2

both —oo and 400 are nonattracting natural boundaries, and the process has a stationary
distribution with the Gaussian density

K _ (0-x?2
n(x):dme K"Z .

The Liouville transformation (3.13-3.14) with xo = 6 reduces the associated Sturm-
Liouville equation (3.10) to the stationary Schrodinger equation (3.12) with the harmonic
oscillator potential

K2

L
Q(y)—4y 7

The potential increases to +oo as y — o0 and, hence, both endpoints are NONOSC.
The spectrum is purely discrete and nonnegative. The transition density p(z; x, y) has a
well-known spectral representation of the form (3.20) with the eigenvalues and normalized
eigenfunctions (e.g., Karlin and Taylor 1981, p. 333):

JK

o

4.3) 1, =«n, on(x) = N, Hy(§), n=0,1,..., where¢ :=

2 K o
(4.4) N; —\/;W

(x—0),
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where H,(x) are Hermite polynomials. Applying Mehler’s formula (eqn. (22) in Erdelyi
1953, p. 194)

> 2 pomm =1 - 2 e { Zor- L) } :
n=0 .

the spectral representation reduces to the familiar Gaussian density

\ —xt _ o(1 — —K1\)\2
(4.5) p(t; x, y):\/%exp{_dw 02({—'—_652'(1)6 ) }

Next consider the Sturm-Liouville equation with discounting,

1
—Eazu” —«(0 — X)u' + xu = Au,

on the whole real line. The Liouville transformation reduces it to the Schrodinger equation

with potential
2
K2 \/E(J’ K (72
=— =) -z+(0-=).
2 =7 <y+ pe 2 +( 2/(2)

The potential increases to +00 as y — +o0o and, hence, both endpoints are NONOSC.
The spectrum is purely discrete and bounded from below. However, it is no longer guar-
anteed to be nonnegative. The Vasicek state-price density gy (¢; x, y),

EJJe hod f(x)] = f TNt x, ¥ dy,

has a spectral representation of the form (3.20) with the eigenvalues and normalized
eigenfunctions (£ and W, are as in equations (4.3), (4.4))

2
2k?

Integrating the unit payoff against this state-price density, we have the eigenfunction
expansion of the form (3.24-3.25) for the zero-coupon bond price with the expansion

coefficients
A a2
e =——Nya"e 7.
oV k

Applying Mehler’s formula, the spectral representation reduces to the familiar expression
for the Vasicek state-price density

a o

2
4.6) X1, =86 +kn, (X)) =Nye " TH(t+a), n=0,1,...,a:= —.
32

—Aot— 1 (x+y—260)— :_§

qr(t;x,y) =e pt;x+ 02 /i,y + 0% /),

where p(t; x, y) is the Gaussian transition density (4.5). Applying the formula for the
generating function of Hermite polynomials (eqn. (19) in Erdelyi 1953, p. 194)

X .n

Z L2
Z —Hn(x) — 62.&74 ,
n!

n=0
the eigenfunction expansion for the Vasicek bond price collapses to the familiar Vasicek
bond pricing formula

—KT 2

1—
4.7  Py(x, 1) = e TR&D, R(X, 7) = Ao + (x — ho)—— + "—3(1 —eTKT)2,
KT 43t
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where Ag =0 — 2"—’:2 is the principal eigenvalue. The principal eigenvalue Ao is negative
when 2«20 < 2. As time to maturity increases, the yield curve flattens out and ap-
proaches the negative principal eigenvalue and the zero-coupon bond price blows up to
infinity.

In contrast with the original Vasicek (1977) model, according to Black’s model of
interest rates as options the instantaneous nominal rate is a positive part of the shadow
rate process (4.1). Thus, the instantaneous nominal rate is always nonnegative and all
term rates (yields on zero-coupon bonds) are strictly positive. We now turn to the pricing
of bonds and bond options in this model.

PROPOSITION 4.1.  Introduce the following notation:

(4.8) z = @(9 - X), =0, 3, B = @9,
o K o
2
(4.9) W)=t uGy =t (x o+ "—2) .
K K 2K

The functions ¥, (x) and ¢;(x) of Proposition 3.3 are expressed in terms of the Weber
parabolic cylinder function D,(z) (we follow the notation of Erdelyi 1953, pp. 116—130,
and Buchholz 1969, pp. 39-49):

(4.10) Vi(x) = €T Dyy(2). x € (—o00, 0],

2
(4.11) ¢, (x) = e* Dypyla — 2), x € [0, c0).

Using the differential properties of the Weber function, the function w() takes the form:
(4.12)  o(d) = cv(A) Dyl — B) Dyy-1(B)

3
+ Dy () [/L(A)Dﬂ(,\)_l(a —B)— %D#m(a - ﬁ)] . where ¢ = Ve

o

Proof. See the Appendix.

The Weber-Hermite parabolic cylinder function D,(z) is expressed in terms of the
Hermite function H,(z) (Lebedev (1972), p. 284):

4.13) Dy(z2)=2"%e 7 H, (%) .

When v = n is an integer, the Hermite function reduces to the Hermite polynomial.
For any v, real or complex, the Hermite function is available as a built-in function in
Mathematica (HermiteH[v, z]) and can be computed with arbitrarily high level of pre-
cision. For all computations in this paper we used Mathematica 4.0 running on a Pen-
tium III PC. The eigenvalues are determined by finding (positive, simple) zeros of the
function w(1). To compute the eigenfunction expansion coefficients, the single integrals
in equations (3.25) and (3.29) were computed numerically using the built-in numerical
integration routine in Mathematica. The Vasicek model with the reflecting boundary
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condition at zero was implemented similarly by substituting the function (4.11) in
Proposition 3.4.

5. THE SHIFTED CIR PROCESS FOR THE SHADOW RATE
Our second example is a shifted Feller (1951) and CIR diffusion on (I, co)’:

.1 dX, = k(® — X,)dt + o/ X, — 1dB,,

where 6 > 0 is the “long-run level”, ¥ > 0 is the rate of mean reversion, and o > 0 is
the volatility parameter. When / = 0 we have the standard CIR process. Here we are
interested in the shifted CIR process with / < 0. We assume that the parameters satisfy
Feller’s condition 2«(8 — /) > o2. The scale and speed densities are:

_ 2x(x-D) 2/((9 - l)
o2 /3 = —
(o2

2k (x=1)

2
(5.2) s(x)=(x—1)"Pe - ;o om(x) = —(x— nfle
o
Under Feller’s condition 8 > 1, conditions (2.2) and (2.6) are satisfied, / is entrance, +00
is nonattracting natural, and the process has a stationary distribution with the shifted
Gamma density

m(x) =

% (2(x=D\T e
o2I'(B) o2 € T

The Liouville transformation (3.13-3.14) with xy =/ reduces the associated Sturm-
Liouville equation (3.10) into the Schrodinger equation (3.15) on (0, oo) with the so-called
radial harmonic oscillator potential.

_[B/A+BB-2] kB kP
(5.3) oy = 2 2 + 16

The potential increases to +o0o as x 1 +oo and, hence, +o0o is NONOSC. Since both
endpoints are NONOSC, the spectrum is purely discrete, and the transition probability
density p(z; x, y) of the CIR process has a well-known spectral representation of the
form (3.20) with the eigenvalues and eigenfunctions (e.g., Wong 1964 and Davydov and
Linetsky 2003):

(54) hi=kn, @) =N, LEVE), n=0,1,..., where§ = w
) (2 =1 nle
- Mo = (oz) TG+

where L (z) are the generalized Laguerre polynomials. Applying the Hille-Hardy for-

mula (eqn. (20) in Erdelyi 1953, p. 189); I,(x) is the modified Bessel function of order

o
« 2
) 1 (3,
z 1—2z

[e¢]

z"n! X
L)L) = (1 — 2)-! _
> oI OHI0 = -9 e {2

7 See also Goeing-Jaeschke and Yor (2003), Pitman and Yor (1982), Shiga and Watanabe (1973) for more
details on these processes.
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the spectral representation reduces to the familiar transition density for the shifted Feller
(1951) diffusion (¢ is defined in equation (5.4) and n := W)

B-1
2 —kt 2 p—
60 penn = o () exP{_m} i JEne ‘>'

(1 _ e—K[) %‘e—l(f 1 _ e—/(t 1 _ e—/(t

Now consider the Sturm-Liouville equation for the shifted CIR process with discounting

1
—502(x —Du” — k(0 — X)u' + xu = ru

on (/,00) (allowing for negative rates). The Liouville transform reduces it to the
Schrodinger equation with the radial harmonic oscillator potential
o2)?

o) +1+ R
where Q(y) is the potential (5.3) without discounting. The spectrum is again purely dis-
crete. The shifted CIR state-price density gcir(Z; X, y) has a spectral representation of
the form (3.20) with the eigenvalues and eigenfunctions (Davydov and Linetsky 2003; &
and WV, are defined in equations (5.4-5.5)):

(5.7) An=yn+ g(y — k), wherey :=+k2+202,.
Y\T epr oy (VE

(5.8) o) =N, (2) e H L (22,
K K

Integrating the unit payoff against this state-price density, we obtain the eigenfunction ex-
pansion of the form (3.24) for the zero-coupon bond price with the expansion coefficients
(Davydov and Linetsky 2003; W, is defined by equation (5.8)):

B n
2(B+n) ;y\s [ o K—y
=N, I (_) ’ .
o-n! K y +k K4y
Applying the Hille-Hardy formula, the spectral representation reduces to the closed-form
expression for the shifted CIR state-price density similar to the transition density (5.6):

—hot+ 57 (x—y+21)

p-1
w2 "\ e _ytEe] 2y VEne !
o2(1—eviy \ge vt k(1—evty [P\l =—er) )"

Applying the well-known formula for the generating function of Laguerre polynomials
(eqn. (17) in Erdelyi 1953, p. 189)

iz"Lif‘)(x) =(1—-2""exp {ﬁ} ,

= z—1

qer(t;x,y) =e

the eigenfunction expansion for the shifted CIR bond price collapses to the shifted CIR
bond pricing formula®

P(x, T) = A(T)e /T80,

8 We note that essentially the same expression was independently obtained by Pitman and Yor (1982) and
by Wong (1964) in entirely different contexts.
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2T — 1) 2y e/ B
B(T):

=i 0= (graeronTy
In this shifted CIR model, in contrast to the standard CIR, the process is allowed to
become negative. However, the principal eigenvalue A is always positive. Hence, the
asymptotic yield is postive as well.

‘We now turn to Black’s model of interest rates as options where the nominal rate is a
positive part of the shifted CIR shadow rate.

PROPOSITION 5.1.  Let —oo < [ < 0. Introduce the following additional notation.

A B r—1 Bk B—1 2kl
5.9 A)=—+ = A) = ——+ — = =——.
(9 @O)=TH5 el =Tt mi=tonai=
The functions v, (x) and ¢;(x) are expressed in terms of the Whittaker functions My, ,,,(z)
and Wy m(z) (Abramowitz and Stegun 1972, p. 505, Buchholz 1969, pp. 9-20; Slater 1960,

pp. 9-10):
(5.10) V() = (x— D~ %" Mygym(®).  xe (0],

(5.11) $() = (x = 5" Wom (%) . x€[0,00),

where & is defined in Eq. (73) and y is defined in (75 ). Using the differential properties of
the Whittaker functions, the function w(A) takes the form

(5.12)
o0 = g M) Wi () = (5 =) Wi (5]
- % o) (J:(_Ol) [(% tm +k1()‘)) My +1.m() = (kl(?») - %) ]Mkl()»),m(a)j| .

Proof. See the Appendix.

The Whittaker functions M and W are related to the Kummer confluent hypergeo-
metric functions (both are available as built-in functions in Mathematica)

Mi(z) = 22773 M(1/2 +m — k, 1 4 2m, 2),
Wim(z) = z2tme=3U(1/2+m — k, 1 + 2m, z)

To compute the coefficients in the eigenfunction expansions for bonds and bond options,
the single integrals in equations (3.25) and (3.29) are computed numerically using the
built-in numerical integration routine in Mathematica.

6. COMPUTATIONAL RESULTS

Table 6.1 presents computational results for zero-coupon bonds in Black’s models with
Vasicek and shifted CIR shadow rates. For longer times to maturity several terms are
enough to attain accuracy of five significant digits. As time to maturity decreases, more
terms in the eigenfunction expansion have to be added to attain the same accuracy. This
convergence pattern is the opposite of typical convergence patterns of numerical PDE
solvers and Monte Carlo simulation.
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TABLE 6.1
Convergence of Eigenfunction Expansions for Zero-Coupon Bonds
in Black’s Model of Interest Rates as Options

Maturity (years)

X 1 5 10 30
Black’s model with Vasicek shadow rate

1% 0.98829 (38) 0.92449 (11) 0.84104 (5) 0.58363 (3)

0% 0.99463 (25) 0.94622 (14) 0.87124 (7) 0.61258 (3)
Original Vasicek

1% 0.99011 0.95679 0.93577 1.01986

0% 0.99958 0.99518 0.99684 1.12152
Black’s model with shifted CIR shadow rate

1% 0.98848 (14) 0.92763 (7) 0.85165 (4) 0.62735 (3)

0% 0.99464 (25) 0.94756 (6) 0.87812 (5) 0.64978 (3)
Original shifted CIR

1% 0.99012 0.95770 0.93869 0.98046

0% 0.99958 0.99515 0.99529 1.05768

Note: Two underlying processes are considered: Vasicek with parameters 6 =
0.01 (1%), k = 0.1, and o vasicek = 0.02 and shifted CIR with parameters § = 0.01, x =
0.1,and /= —0.05 (—5%). To facilitate comparison, the volatility parameter ocr for
the shifted CIR model is selected so that at the initial shadow rate level x the absolute
volatility is the same as the volatility of the Vasicek process, ocir v X — [ = Ovasicek =
0.02. Two starting shadow rate values are considered: x = 1% and 0%. Numbers in
parentheses next to the bond prices give the number of terms in the eigenfunction ex-
pansion required to attain accuracy of five significant digits. The original Vasicek and
shifted CIR bond prices are computed using the standard closed-form Vasicek and
shifted CIR bond pricing formulas.

Table 6.2 presents computational results for bond options. The shadow rate is assumed
to follow the Vasicek process with parameters & = 0.01(1%), « = 0.1, and oyasicek = 0.02.
The put option considered in this example expires in two years (¢ = 2) and is written
on a four-year zero-coupon bond (7" = 4); therefore, at the time the option expires the
underlying bond will have two years remaining to maturity (t = 7 — ¢ = 2). The initial
shadow rateis x = 0.01. The option is at-the-money at inception (i.e., the strike is equal to
the forward bond price K = P(x, 0,4)/P(x, 0, 2) = 0.9666928). The corresponding value
of x* is 1.52853%. The series in equation (3.27) is truncated after N terms. The series in
equation (3.28) is truncated after M terms. The table gives the corresponding put option
values. The corresponding original Vasicek put option value is 0.01093.

Figure 6.1 plots four sample yield curves in Black’s model with the Vasicek shadow rate
process and initial shadow rates x = 1%, 0%, —1%, and —5%. The model parameters are
6 = 0.01,x = 0.1,and 0 = 0.02. The yield curve with x = 1% starts at 1% (the short rate
is equal to the shadow rate) and gradually increases toward the asymptotic yield equal
to the principal eigenvalue A9 = 0.017423 (see equation (3.26)). This yield curve has a
typical upward-sloping shape. The curve with the initial shadow rate of 0% starts at zero
(the short rate is equal to the shadow rate), quickly increases toward 1%, then the rate of
increase slows and the curve gradually tends toward the asymptotic yield A¢. The curve
with x = —1% has a negative initial shadow rate. It starts at zero then gradually increases
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TABLE 6.2
Convergence of Eigenfunction Expansions for Bond Options in Black’s Model
of Interest Rates as Options

M=1 5 10 15
N=1 0.06878 0.01607 0.01604 0.01604
5 0.06149 0.01260 0.01256 0.01255
10 0.05784 0.01162 0.01163 0.01161
20 0.05737 0.01152 0.01153 0.01152
25 0.05735 0.01151 0.01152 0.01151

Note: The shadow rate is assumed to follow the Vasicek process with parameters 6 =
0.01 (1%), x« = 0.1, and o = 0.02. The put option expires in two years (¢ = 2) and is
written on a four-year zero-coupon bond (7 = 4); therefore, at the time the option
expires the underlying bond will have two years remaining to maturity (t = 7 — t =
2). The initial shadow rate is x = 0.01. The option is at-the-money at inception (i.c.,
the strike is equal to the forward price K = P(x, 0,4)/P(x,0,2) = 0.9666928). The
corresponding value of x* is 1.52853%. The series in equation (3.27) is truncated after
N terms. The series in equation (3.28) is truncated after M terms. The table gives the
corresponding put option values. The corresponding original Vasicek put option value
is 0.01093.
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Time to maturity (years)
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FIGURE 6.1. Yield curves in Black’s model with the Vasicek shadow rate. Parameters:
9 =0.01,« = 0.1, 0 = 0.02, and initial shadow rates x = 0.01, 0, —0.01, —0.05.

toward A¢. Again, the shape of the curve is fairly typical. The most interesting curve is
the one with the large negative initial value x = —5%. The curve starts at zero and stays
virtually at zero for the first two years. This is intuitive since at the volatility 0.02 and
mean reversion rate 0.1 the probability of the shadow rate moving back up above zero
and the short rate becoming positive within two years is quite small. At around two-year
maturity the rate of increase picks up and the curve slopes upward quite sharply between
two- and fifteen-year maturity. Then the rate of increase slows and the curve gradually
flattens out and tends toward A¢.° As we shall see in Section 7 the current Japanese
Government Bond yield curve has a similar shape.

9 Note that the asymptotic yield is the same for all curves, as it is independent of the initial shadow rate
level x and is determined by the model parameters o, 6, and k.
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FIGURE 6.2. Yield curves in Black’s model with the Vasicek shadow rate, the Vasicek
process with reflecting boundary at zero, and the original Vasicek model. Parameters:
6 =0.01,« =0.1,0 =0.02, x = 0.01.
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FIGURE 6.3. Yield curves in Black’s model with the Vasicek shadow rate, the Vasicek
process with reflecting boundary at zero, and the original Vasicek model. Parameters:
0 =0.01,c=0.1,06 =0.02,x =0.

Figure 6.2 plots the yield curves in Black’s model with the Vasicek shadow rate, the
Vasicek process with reflecting boundary at zero, and the original Vasicek model. The
initial short rate is » = 0.01 in all three cases. The Vasicek yield curve starts at 1% and
is downward sloping. It decreases toward the asymptotic yield equal to the principal
eigenvalue Ao = 6 — %22 = —0.01, which is negative for these parameter values. In con-
trast, the corresponding yield curves for Black’s model with the Vasicek shadow rate and
for the Vasicek process with reflecting boundary condition at zero are upward sloping
toward their respective asymptotic yields (principal eigenvalues). The asymptotic yield
for the reflecting model is significantly greater than for Black’s model. Intuitively, in the
reflecting model when the short rate drops to zero, it is instantaneously reflected from
zero. In contrast, in Black’s model the shadow rate can fall below zero. As a result, the
reflecting yield curve is above Black’s model curve. Figure 6.3 plots the same yield curves
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TABLE 7.1
Calibration to JGB Data

Coupon Maturity Price Bootstrapped yield (%) Model yield (%)
4.2 3/20/2003 104.648 0.02 0.03
3.4 3/22/2004 106.900 0.14 0.17
44 3/21/2005 112.729 0.30 0.36
3.1 3/20/2006 110.481 0.54 0.57
2.6 3/20/2007 109.326 0.76 0.78
1.9 3/20/2008 105.578 0.98 0.98
1.9 3/20/2009 104.723 1.24 1.16
1.7 3/22/2010 102.521 1.40 1.33
1.4 3/21/2011 99.314 1.51 1.48
1.5 12/20/2011 99.997 1.53 1.59
3.8 9/20/2016 123.287 2.11 2.09
2.1 12/20/2021 98.411 2.29 2.44
2.4 11/20/2031 94.810 2.88 2.79

Note: The first three columns give JGB data from Bloomberg, including coupon,
maturity, and prices on 02/03/2002. The last two columns give boot-strapped zero-
coupon yields and calibrated model yields. Calibrated Vasicek shadow rate process pa-
rameters are § = 0.0354, k = 0.212, 0 = 0.0283, and x = —0.0512. JGB data source:
Bloomberg.

but starting from zero. Again, the three curves tend to their respective asymptotic yields
(principal eigenvalues).

7. MODEL CALIBRATION TO THE JAPANESE GOVERNMENT
BOND DATA

In this section we calibrate Black’s model with Vasicek shadow rate process to the Japanese
Government Bond (JGB) data. Table 7.1 gives JGB data from Bloomber, including
coupon, maturity, and prices on 02/03/2002. The last two columns give bootstrapped
zero-coupon yields and calibrated model yields. Calibrated Vasicek shadow rate process
parameters are 6 = 0.0354, k = 0.212, 0 = 0.0283, and x = —0.0512. Figure 7.1 plots
JGB and calibrated model yield curves. The fit of the model to the JGB data is excellent.
We have 13 data points (13 bonds), three model parameters (6, x, and o) plus the initial
shadow rate x. We fit the model by minimizing the root mean squared error between the
JGB yield curve and the model yield curve (Table 7.1). It is particularly notable that the
current implied Japanese shadow rate is negative at —5.12%.

8. CONCLUSION

In this paper we show that Black’s model of interest rates as options has the same degree
of analytical tractability as the corresponding model with reflecting boundary at zero.
We develop a general framework for interest rate models of this class where the shadow
rate is a one-dimensional diffusion and we derive analytical solutions for the Vasicek and
shifted CIR shadow rate specifications as our principal examples. Our calculations are
based on the observation that zero-coupon bonds in Black’s model can be interpreted
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FIGURE 7.1. Japanese Government Bond yield curve on 02/03/2002 and calibrated
Black’s model yield curve. Calibrated Vasicek shadow rate process parameters are
0 =0.0354,« = 0.212, 0 = 0.0283, and x = —0.0512. JGB data source: Bloomberg.

as Laplace transforms of the area functional. We then apply spectral theory to compute
them in terms of eigenfunction expansions. The same methodology is then extended to
bond options and yields analytical expressions for options on zero-coupon bonds given
as eigenfunction expansions. Computationally, the longer the time to maturity, the faster
the eigenfunction expansions converge.

We calibrate Black’s model of interest rates as options to Japanese Government Bond
data and show that it is capable of providing an excellent fit to the JGB data. Not
surprisingly, the current implied value of the Japanese shadow rate turns out to be negative
ataround —5%. The calibrated model can be used by practitioners for pricing and hedging
of Japanese interest rate derivatives.

In conclusion, we note that the framework developed in this paper can be applied in
other economic contexts. Generally, let ; be some economic variable that is not allowed
to drop below a certain lower floor L (e.g., a fixed price support level for a commodity).
Introduce a shadow variable X that is assumed to follow a process that is allowed to drop
below L and treat the constrained variable ¥ as an “option”on X : V, = L+ (X, — L)*.
When the shadow variable is above the floor L, the constrained variable is equal to
the shadow variable. When the shadow variable drops below the floor, the constrained
variable stays at the floor level L and will continue to stay at L until the shadow variable
comes back above L. If we are interested in the average value of the variable }” over some
time horizon, we are led to study the distribution of an area functional fot (X, — L)"du.
These applications are left for future research.

APPENDIX: PROOFS

Proof of Proposition 3.2.  The bond put payoff is (K — P(x, t, T))1(x—p(,i, 7)>0)- Since
the zero-coupon bond price is a strictly decreasing function of the shadow rate, we can
rewrite the payoff in the form (K — P(x, ¢, T))1ix>+, where x* is the unique root of
equation (3.30). Using the eigenfunction expansion (3.24) for the zero-coupon bond, we
further rewrite the payoff (K — >, eme " T=00,,(x))1 (x> ). The expansion (3.27) now

follows by specifying (3.23) to the put payoftf. The coefficients of the expansion are

Pn = /r (K — i Cmekm(Tt)ﬂpnz(x)) %(x)m(x) dx

x* m=0
= K [ ouom(dx =3 ene 00 [ g, (omx) d O
x* x*

m=0
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Proof of Proposition 3.3. We follow the approach of Linetsky (2002b, Sec. 5.1). Both
endpoints are NONOSC and we are in the Spectral Category I. Consider the ODE (3.11)
on (/,r). Let &(x), x € (I,r), A € C, be the unique (up to a multiple independent of x)
solution such that

0
(A.1) / 1&.(x))*m(x) dx < oo
1
and
. &)
(A.2) lgfll ) 0

for each A € C, and §,(x) and &; (x) are continuous in x and A in (/, 7) x C and entire in
A for each fixed x € (/, r). Such a solution exists by Lemma 1 in Linetsky (2002b).

Let n;(x), x € (I, r), A € C, be the (unique up to a multiple independent of x) solution
such that

(A3) / I ()Pm(x) dx < 0o
0
and
()
A9 lxlgl s(x) 0

for each A € C, and n,(x) and »; (x) are continuous in x and % in (/, r) x C and entire in
A for each fixed x € (/, r). Such a solution exists by Lemma 1 in Linetsky (2002b).

Now consider the two intervals (/, 0] and [0, r) separately. Let ¢;(x) and x;(x) be
two linearly independent solutions of the ODE (3.31) on the interval (Z, 0]; ¥, (x) is as
in Proposition 3.3 (such a solution exists by Lemma 1 in Linetsky 2002b) and x;(x) is
linearly independent of v, (x). Let £;(x) and ¢, (x) be two linearly independent solutions
of the ODE (3.34) on the interval [0, r); ¢, (x) is as in Proposition 3.3 (such a solution
exists by Lemma 1 in Linetsky 2002b) and ¢; (x) is linearly independent of ¢, (x)).

Then the solutions & (x) and 7, (x) can be written in the form

WA(X)» X € (lv O]
Olli')\(x) + :31¢A(x)v X € [Ov }") 7
P (x) + Boxo(x),  x€(l,0]
$3.(x), xel0,r)

The continuity of & (x), & (x), n.(x) and 7} (x) at x = 0 uniquely fixes the four constants
a, a2, Bi, and Ba:

(A5) &(x) = {

(A.6) m(x) = :

(A7) ¥ (0) = a1£,(0) + B19:.(0), ¥;(0) = a1£;,(0) + B4, (0),

(A.8) $1(0) = a2,.(0) + B2x:.(0), #,(0) = 297 (0) + B2x;(0),

and

(A9) @ = $1(0)7;,.(0) — ¥,.(0)¢; (0) gy = ¥.(0)2,(0) — ,(0)¥,(0)
' $:.(0)£1(0) — £,(0)p(0) $:.(0)51(0) — £,(0)p(0)

(A.10) _ x:(0)9;(0) — ¢:(0) x;(0) gy = $1(0)17;,.(0) — ¥,.(0)¢; (0)

“ T %00 — v 0)40) — 00¥5(0) = ¥5.(0)x;(0)°
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Then the Wronskian of &; (x) and 1, (x) given by equations (A.5) and (A.6) is

(A.11) [0, ml(x) = &.(x) rg((xv)) — m(x) i)\((x);)

1 / /
@(%(O)%(O) — $2(0)9,(0)) = w().
The Wronskian is an entire function of A with all of its zeros simple and located on the

positive real half-line. At an eigenvalue A = A, (zero of the function w(2)), the Wronskian
vanishes and &, (x) and »,,(x) become linearly dependent:

_ 6.0
" 9,00
Thus, §,,(x) can be taken as a nonnormalized eigenfunction. Finally, according to
Theorem 5 in Linetsky (2002b), the corresponding normalized eigenfunctions can be

taken in the form
A, dw(A)
n\A) = - s An = s
@u(x) v A, &.,(%) D |y

and we arrive at the result (3.39). O

(A.12) M2, (X) = 463,(X),

Proof of Proposition 3.4. Consider the ODE (3.34) on the interval [0, r). Let ¢, (x) be
as in Proposition 3.3. Let ¢;(x) be the unique solution satisfying the initial conditions at
zero:

6.00) =1, £;(0)=0.

Select x¢p = 0 in the definition of the scale density (2.3) so that 5(0) = 1. The Wronskian
of the two solutions is [£;, ¢, ](x) = w(X), where w(}) is independent of x. Setting x = 0
and using the initial conditions for ¢, we have w(A) = ¢;(0). The Wronskian is an entire
function of A with all of its zeros simple and located on the positive real half-line. At
an eigenvalue A = A, (zero of the function ¢;(0)), the Wronskian vanishes and ¢, (x)
and ¢;, (xx) become linearly dependent (recall that £, (0) = 1):

62, (X) = 4,83, (%), A, = ¢5,(0).

Thus, ¢,,(x) can be taken as a nonnormalized eigenfunction. Finally, according to
Theorem 5 in Linetsky (2002b), the corresponding normalized eigenfunction can be
taken in the form
de¢; (0
o D) A0
v An Ay dx A=A,

Proof of Proposition 4.1. Consider the ODE (3.31) specified to the Vasicek process:

O

1
(A.13) —§a2u” — k(0 — X' = ru, x € (—00, 0].

Introduce the standardized variable z = @(6 — x) and look for solutions in the
form u(x) = e w(z). Substituting this functional form into (A.13), we arrive at the Weber-
Hermite equation for w (Erdelyi 1953, p. 116), and Buchholz 1969, p. 39):

\/2/(0
—9.

1 2 A
(A14) w.+|z+v——)w=0, Vi=—, z € [B, 00), B =
2 4 K
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The solution of (A.14) bounded at z = +o0is D, (z) (D, (z) is the Weber-Hermite parabolic
cylinder function). Then the solution (4.10) of the original ODE (A.13) satisfies the
square-integrability condition (3.32).

Next, consider the ODE (3.34) specified to the Vasicek process:

1
(A.15) —Eozu” — k(@ — X’ + xu = Au, x € [0, 00).
The same transformation reduces it to

)
(A.16) wzz+<%+u—(“4z)>w=o, z e (—00, Bl,

) o? A—06 ) 2
,LL:%-‘F P , o .=0 F

The solution of (A.16) bounded at z = —oco is D, (« — z), and the solution (4.11) of the
original ODE (A.15) satisfies the square-integrability condition (3.35).
Finally, using the differential property of Weber-Hermite functions

(A.17) D/(5) = vDy1(2) = 5 D,(2)
the function (3.37) is reduced to the form (4.12). (Il
Proof of Proposition 5.1. Consider the ODE (3.31) for the shifted CIR process:

1
(A.18) —Eaz(x — Dty — k(0 — Xuy =2,  xe(,0]
Introduce tl(le standardized variable & = 2’((‘ D and look for solutions in the form u(x) =
(x=10" Seom w (&). Substituting this functlonal form into equation (A.18), we arrive at
the Whittaker equation for w (Abramowitz and Stegun 1972, p. 505; Buchholz 1969,
pp. 9-20; Slater 1960, pp. 9-10):

(A.19) Y (R R ek IV
. Wee 2 %_ 52 w =4y, c (U, o],
where ki, m, and o are as defined in equation (5.8). Whittaker functions M, ,,(£)
and W/cl m(é‘) give two linearly 1ndependent solutions of (A.19). The functions (x —

H~ be o Ml m(Ex)) and (x — )~ Se e Wi, .m(€(x)) give two linearly independent so-
lutions of the original ODE (A.18). To investigate the behavior of solutions near the left
endpoint, we note the asymptotic behavior of Whittaker functions (Slater 1960):

£ £

(A.20) Mim(€) ~E™3e77 and M,m(s>~s—"’+%e—f as& | 0.

From the asymptotics (A.20), the solution (x — /)~ ze a2 Mk1 m(&(x)) is both square-
integrable with the speed density (5.2) on (/, 0] and satisfies the boundary condition
(3.33). Thus, the solution ¥, (x) is given by equation (5.10).

Next, consider the ODE (3.34) for the shifted CIR process:

1
(A.21) —Eaz(x — Dty — k(0 — Xty 4+ xu = Au, x € [0, 00).

Introduce t(he] standardized variable ¢ := X£ and look for solutions in the form u(x) =
(x=0D~ e w(¢). Substituting this funct10nal form into (A.21), we arrive at the
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Whittaker equation for w of the same form (A.19), but for the variable ¢ on the in-
terval [ya/k, 0o) and with k, (defined in equation (5.9)) in place of k| (m is the same
as before). The solution square-integrable with the speed density on [0, 00) is ¢; (x) =

K(x

(x — )5 e"™ Wiym(¢) (equation (5.11)).
Finally, using the differential properties of Whittaker functions (Slater 1960, p. 24, eqn.
(2.4.12) and p. 25, eqn. (2.4.24)) (prime denotes differentiation in 25)

1
(a2 oM@ = (5 m k) M) - (k= 3) Mo
z
(A23) W) = (5 = &) Won2) = Wherrn(),
the function (3.37) is reduced to the form (5.12). O
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