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Abstract

Previous work has developed algorithms for finding an equitable convex partition that par-

titions the plane into n convex pieces each containing an equal number of red and blue points.

Motivated by a vehicle routing heuristic, we look at a related problem where each piece must

contain one point and an equal fraction of the area of some convex polygon. We first show how

algorithms for solving the older problem lead to approximate solutions for this new equitable

convex partition problem. Then we demonstrate a new algorithm that finds an exact solution to

our problem in O(Nn logN) time or operations, where n is the number of points, m the number

of vertices or edges of the polygon, and N := n+m the sum.

Keywords: F.2.2 Nonnumerical Algorithms and Problems — Geometrical problems and com-

putations · F.2.2 Nonnumerical Algorithms and Problems — Routing and layout partitioning ·

computational geometry · vehicle routing

1 Introduction

Practical Motivation Our problem can be motivated in the context of dynamic resource allo-

cation or multiple depot vehicle routing. Suppose for example that there are n vehicles servicing
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customers in a convex region C. The vehicles start at the set of depots P . We want to route the

vehicles such that all customers are visited while minimizing the time until the last vehicle returns

to its depot (Carlsson et al., 2009).

The key step in dynamic resource allocation problems is to allocate resources to clients in a

load-balanced manner. In our vehicle routing example, we allocate to each vehicle the customers

it will service. Routing the vehicle from its depot, to its allocated customers, and then back to

the depot in the shortest time is a traveling-salesman problem. Since we seek to minimize the

maximum travel time, we expect the travel times of the vehicles to be roughly equal in an optimal

solution.

One heuristic is to find an equitable partition of C and P (one which partitions C into n pieces

of equal area each containing one point of P ). Then we assign all customers in one part of C to

the vehicle starting at the depot in that part. This heuristic is asymptotically optimal when we

assume that there are many customers and that their locations are i.i.d. uniformly in C. This is

because the following well-known theorem (Beardwood et al., 1959) shows that the length of each

vehicle’s route is asymptotically proportional to the square root of the area of the region it services

and because the equitable partition splits C into regions of equal area.

Theorem 1. Suppose that p is a point in convex set R and that Xi’s are random points i.i.d. uni-

formly in R. Then the length TSP(p,X1, . . . , Xk) of the optimal travelling salesman tour traversing

points p and X1, . . . , Xk satisfies

k−1/2 TSP(p,X1, . . . , Xk)→ α
√
λ(R), a.s.

as k →∞, where α is some constant and λ(R) denotes the area of region R.

Using a convex equitable-partition might have some further benefits. We expect that odd-

shaped regions take longer to service than more compact regions with the same area. Convex

regions also ensure that a vehicle’s traveling-salesman tour remains in its service region and may

be a robust way to handle some small uncertainty in the customers’ exact locations.

Suppose that, instead of using traveling salesman tours to service the clients, we want to connect

each of the clients using spanning (or Steiner) trees to some point in P so as to minimize the size

of the largest tree. The theorem above holds not only for traveling salesman tours but also for
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minimum spanning trees and Steiner trees (but with different values of α) (Beardwood et al., 1959;

Steele, 1988). Hence asymptotically in the case of many clients, the optimal solution partitions C

into pieces of equal area each containing one point in P (as in the above case for vehicle routing).

Problem Definition We say (R1, . . . , Rn) is a convex partition of some set R if the pieces form a

partition of R (i.e., the pieces are disjoint and R = R1∪· · ·∪Rn) and for each piece i = 1, . . . , n the

closure of piece i, Ri, is convex. Consider two measures µ1 and µ2 on the plane, R2. An equitable

convex partition with respect to µ1 and µ2 is a convex partition of the plane into n pieces of equal

measure with respect to both µ1 and µ2: the pieces (Ri) are disjoint, R2 = R1 ∪ · · · ∪ Rn, and for

each piece i = 1, . . . , n (i) the closure Ri is convex, (ii) µ1(Ri) = 1/n, and (iii) µ2(Ri) = 1/n. When

n = 2 this is the well-studied ham sandwich problem (Steinhaus et al., 1938).

Notation We use |X| to denote the cardinality of a set X. For a set X ⊂ R2 in the plane, we

denote its boundary by ∂X, its complement by Xc, its convex hull by conv(X), and its Lebesgue

measure (i.e., its area) by λ(X). We denote the symmetric difference of two sets by X4Y . So if

X is a half-plane, then ∂X is the line separating X and its complement Xc. For any three distinct

points a, b, and c, ab is the line segment from a to b;
←→
ab is the line passing through a and b;

−→
ab is

the ray originating from a and going through b; and 4abc is the triangle with vertices a, b, and c.

Previous work has studied this problem for particular choices of measures µ1 and µ2.

Example 1 Theorem 12 of Bespamyatnikh et al. (2000) and theorem 1 of Sakai (2002) show that

an equitable convex partition exists when µ1 and µ2 are both probability measures with densities:

Theorem 2. Let ρ1 and ρ2 be measurable functions R2 → [0,∞) with
∫
R2 ρi(x) dx = 1 for i = 1, 2.

Then for any n > 0, there exists a partition of the plane into n convex pieces R1, . . . , Rn such that∫
Rj
ρi(x) dx = 1/n for i = 1, 2 and j = 1, . . . , n.

Example 2 Consider the case where P1, P2 ⊂ R2 are finite sets of points in general position, and

µ1 and µ2 are defined as µi(S) := |S ∩ Pi| / |Pi| for any set S. Here general position means no three

points (of P1 ∪ P2) are collinear. Then Ito et al. (1998), theorems 17 and 18 of Bespamyatnikh

et al. (2000), and corollary 2 of Sakai (2002) show that an equitable convex partition exists when
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the number of points in both P1 and P2 are a multiple of n (Bespamyatnikh et al. also give an

algorithm):

Theorem 3. Given ng red points and nh blue points in the plane in general position. A subdivision

of the plane into n convex polygonal regions each of which contains g red and h blue points can be

computed in O(N4/3 log3N log n) time where N = n(g + h).

Related Problems Previous work has been done on problems closely related to equitable convex

partitions. Bereg et al. (2006) and Bárány and Matoušek (2001) relax requirement (i) that the pieces

of the partition are convex. Bárány and Matoušek (2001) examine partitions generated by fans

(multiple rays emanating from a common point) while Bereg et al. (2006) solve a generalization

of example 2: they assume the points are in some (not necessarily convex) polygon and find a

partition into pieces that are relatively-convex. Kaneko and Kano (2001) go beyond equal partitions

(requirements (ii) and (iii)) and ask whether for some given positive α1 + · · ·+ αn = 1 there exists

a convex partition such that µ1(Ri) = µ2(Ri) = αi for each piece i = 1, . . . , n (an equitable convex

partition sets αi = 1/n). They give some results for the atomic measures in example 2. Kaneko and

Kano (2002) solve a variant of the equitable convex partition problem where µ2 is not a standard

measure on R2: µ1(S) measures the area of a convex polygon C inside S and µ2 measures the

perimeter of C inside S. Koutsoupias et al. (1992) give a related result showing how to divide

a convex polygon into two pieces with equal area while minimizing the total perimeter of the

pieces. Bast and Hert (2000) provide an algorithm for the (less related) problem of partitioning a

polygon (not necessarily convex) into connected components with given areas and hopefully small

cut-lengths.

Our Problem We consider the equitable convex partition problem where µ1 is an atomic measure

as in example 2 and µ2 is a probability measure with a density as in example 1. Specifically, consider

a convex polygon C with m vertices and a set n of points P ⊂ C in general position. Polygon

C is specified by a list of its vertices in clockwise order. The goal of this paper is to find an

equitable convex partition when we define µ1(S) := |S ∩ P | / |P | and µ2(S) := λ(S ∩ C)/λ(C) for

any measurable set S.

Note that the Voronoi diagram of C for the n points satisfies conditions (i) and (ii) for an
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equitable convex partition (described previously in our Problem Definition paragraph) but not

(iii). Hert and Lumelsky (1998), motivated by a terrain-covering problem in robotics, find solutions

satisfying (ii) and (iii) but not (i).

Paper Overview In section 2 we show how our problem can be approximated arbitrarily well

using the discrete version of the region partition problem described in example 2. This generates an

approximation algorithm for our problem and a theorem guaranteeing the existence of a solution.

Section 3 directly constructs an exact region partition. With an approach similar to the one Ito

et al. (1998) use for the discrete version of the problem (see example 2), we develop a divide-and-

conquer strategy that reduces our problem into two or three smaller problems by partitioning C

into two or three convex polygons, respectively.

Our algorithm first determines the approximate location of such a partition by performing some

binary searches on the vertices of C or the points P (both of which are finite sets). Once we know

how P is partitioned and which edges the partition of C intersects, we solve a one-variable quadratic

or linear equation to determine the exact location of the partition.

The benefit of the direct algorithm described in section 3 is that its only approximation is

computing square roots of positive numbers to solve some quadratic equations. Because there

exist algorithms that calculate square roots with quadratic convergence, one may say that the ε-

dependency of our solution time is log log 1
ε (which is typical for a floating point algorithm). This is

much less than the ε−8/3 log3 1
ε dependence of the approximation algorithm described in section 2.

Section 4 discusses how the algorithm from section 3 can be extended to deal with the case where

µ2 is a probability measure with a density (instead of the specific case where µ2(S) = λ(S∩C)/λ(C)

for some convex set C). In our vehicle routing example, customers might not be spread uniformly

in some convex set but may occur with higher density in some locations than in others. Another

example of this extension is the case where we drop the requirement that C be convex but we still

define µ2(S) := λ(S ∩ C)/λ(C). As an additional example, suppose we seek an equitable convex

partition in some higher dimension (i.e., µ2 and P are defined in Rd for some d > 2). One approach

is to seek an equitable convex partition into prisms (i.e., points in Rd are partitioned based on

their first two coordinates). To find such a partition we first project P and µ2 onto the first two

coordinates (or some other plane); the projected measure is defined for any measurable set S ⊆ R2
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as µ̃2(S) := µ2(S × Rd−2). Then we find an equitable convex partition for the two dimensional

problem.

We conclude in section 5 with a discussion of open problems.

2 Approximation and Existence

Since the first measure, µ1, is the same in our problem and in example 2, we can view our problem

as a limiting case of example 2 where the second measure from example 2 (counting the fraction of

points of P2 in a given set) tends to the second measure in our problem (measuring the area-fraction

of C in a a given set). Generalizing the measure used in example 2, we define for any finite set of

points, Q, a measure ξ(·;Q) so that ξ(S;Q) := |S ∩Q| / |Q| for any set S. Now consider a sequence

(Qi) of sets of more and more points, |Qi| → ∞, whose elements are spaced more or less uniformly

in C. Assume specifically that there exists a sequence of grids, (Gi) := (∆iZ×∆iZ) with decreasing

grid sizes, ∆i ↘ 0, such that for any grid point in C, g ∈ Gi ∩ C, there exists exactly one point

of Qi in g + 0.5∆i[−1, 1) × 0.5∆i[−1, 1) (i.e., closer to that grid point than any other). This is

illustrated in figure 1. Then the atomic measures, ξ, generated by the Qi converge to the second

measure in our problem (measuring the area-fraction).

Δ
i

Δ i

Qi

Gi

gg + 0.5(Δ
i
, -Δ

i
)

Figure 1: Points Qi and grid Gi.
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Lemma 4. For any (Lebesgue) measurable set S, ξ(S;Qi)→ λ(S ∩ C)/λ(C) as i→∞. Further-

more if S is convex this convergence is uniform: for |Qi| ≥ 156 + 437(diam(C))2/λ(C),

|ξ(S;Qi)− λ(S ∩ C)/λ(C)| ≤ 45 |Qi|−1/2 diam(C)/
√
λ(C)

where diam(C) is the diameter of set C.

For the proof we will need the following lemma.

Lemma 5. For y ≥M3 +M4/β, 0 ≤ x, β ≤ π/4, and

x ≤ 2

y − 4
+

√(
2

y − 4

)2

+
β

y − 4
(1)

the following inequalities hold with M1 = 2, M2 = 13, M3 = 156, and M4 = 437

x ≤M1

√
β/y, x2 ≤ (β/y)(1 +M2/

√
βy).

Proof of lemma 4. We first prove the second claim. Consider a convex set S and the grid Gi. The

idea is to relate the area of S ∩ C to the tiles of Gi associated with the points S ∩ Qi. Suppose

S ∩Qi has a height of a tiles and a width of b tiles. We can bound the area of S (measured in tiles)

by expanding or shrinking the set of tiles associated with S ∩Qi:

−2(a+ b) + 4 ≤ λ(S ∩ C)/∆2
i − |S ∩Qi| ≤ 2(a+ b) + 4, (2)∣∣λ(S ∩ C)/λ(C)− (|S ∩Qi|+ 4)∆2
i /λ(C)

∣∣ ≤ 2(a+ b)∆2
i /λ(C). (3)

Since a, b ≤ diam(C)/∆i + 2,

∣∣λ(S ∩ C)/λ(C)− (|S ∩Qi|+ 4)∆2
i /λ(C)

∣∣ ≤ (8∆2
i + 4 diam(C)∆i)/λ(C), (4)∣∣λ(S ∩ C)/λ(C)− |S ∩Qi|∆2

i /λ(C)
∣∣ ≤ (12∆2

i + 4 diam(C)∆i)/λ(C). (5)
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Applying (4) to C and noting that Qi ⊂ C,

(|Qi|+ 4)∆2
i − λ(C) ≤ 8∆2

i + 4 diam(C)∆i, (6)

(|Qi| − 4)∆2
i − 4 diam(C)∆i − λ(C) ≤ 0. (7)

Since |Qi| ≥ 4, it follows that

∆i

diam(C)
≤ 2

|Qi| − 4
+

√(
2

|Qi| − 4

)2

+
λ(C)/(diam(C))2

|Qi| − 4
(8)

and that ∆i ≤ diam(C). Applying lemma 5 and noting that λ(C)/(diam(C))2 ≤ π/4 we obtain

the identities,

∆i ≤M1

√
λ(C)

|Qi|
, ∆2

i ≤ diam(C)M1

√
λ(C)

|Qi|
, ∆2

i ≤
λ(C)

|Qi|

(
1 +

M2 diam(C)√
λ(C) |Qi|

)
.

Substituting them into (5),

∣∣∣∣∣λ(S ∩ C)/λ(C)− |S ∩Qi| / |Qi|

(
1 +

M2 diam(C)√
λ(C) |Qi|

)∣∣∣∣∣ ≤ 16M1 diam(C)√
|Qi|λ(C)

. (9)

Using the triangle inequality,

|λ(S ∩ C)/λ(C)− |S ∩Qi| / |Qi|| ≤ (16M1 +M2 |S ∩Qi| / |Qi|) diam(C)/
√
|Qi|λ(C). (10)

Since |S ∩Qi| / |Qi| ≤ 1,

|λ(S ∩ C)/λ(C)− |S ∩Qi| / |Qi|| ≤ (16M1 +M2) diam(C)/
√
|Qi|λ(C). (11)

Substituting the values for M1 and M2 from lemma 5 proves the second claim.

Having proved the second claim, we know that ξ(S;Qi) → λ(S ∩ C)/λ(C) for convex sets S.

The first claim follows from the fact that the Lebesgue measurable sets are the completion of the

sets generated by convex sets.
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Proof of lemma 5. We first show that the second identity implies the first. Taking the square root

of both sides of the second identity gives x ≤
√
β/y

√
1 +M2/

√
βy. Since y ≥ M4/β, 1/

√
βy ≤

1/
√
M4 and hence x ≤

√
β/y

√
1 +M2/

√
M4. Substituting our values for M2 and M4 proves the

first identity.

To prove the second identity we first square both sides of (1),

x2 ≤ 8

(y − 4)2
+

β

y − 4
+

4

y − 4

√(
2

y − 4

)2

+
β

y − 4
(12)

=
1

y − 4

β +
8

y − 4
+ 4

√(
2

y − 4

)2

+
β

y − 4

 . (13)

Since
√
· is subadditive,

√
a+ b ≤

√
a+
√
b. Hence

x2 ≤ 1

y − 4

(
β +

16

y − 4
+

4
√
β√

y − 4

)
=

β

y − 4

(
1 +

4√
β(y − 4)

(
1 +

4√
β(y − 4)

))
. (14)

Since M3 ≥ 4, y − 4 ≥M4/β and hence 1/
√
β(y − 4) ≤ 1/

√
M4. Therefore,

x2 ≤ β

y − 4

(
1 +

4(1 + 4/
√
M4)√

β(y − 4)

)
=
β

y

(
1 +

4

y − 4

)(
1 +

4(1 + 4/
√
M4)√

β(y − 4)

)
(15)

=
β

y

(
1 +

4(1 + 4/
√
M4)√

β(y − 4)

(
1 +

β

(1 + 4/
√
M4)

√
β(y − 4)

+
4

y − 4

))
. (16)

Because β ≤ π/4 and y−4 ≥M4/β it follows that 4/(y−4) ≤ π/M4 and β/
√
β(y − 4) ≤ π/(4

√
M4).

This allows us to bound the term in the inner parentheses,

x2 ≤ β

y

(
1 +

4(1 + 4/
√
M4)√

β(y − 4)

(
1 +

π

(1 + 4/
√
M4)4

√
M4

+
π

M4

))
. (17)

Since y ≥M3 ≥ 8, 1/(y − 4) ≤ 2/y. Therefore,

x2 ≤ β

y

(
1 +

8(1 + 4/
√
M4)√

βy

(
1 +

π

(1 + 4/
√
M4)4

√
M4

+
π

M4

))
. (18)

Substituting our value for M4 proves the identity.
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An Approximation Algorithm We can find an approximate solution to our problem by apply-

ing the theorem from example 2, theorem 3, taking the first set of points (the red ones) as our points,

P1 := P , and the second set of points (the blue ones), P2, as a set of hn points in general position

that are spaced more or less uniformly in C (in the sense described above). Here h is some positive

integer. Theorem 3 generates a partition of C into n convex pieces, (C1, . . . , Cn), each containing one

point of P and h points of P2. We then use lemma 4 to bound the area of each piece. For each piece

i, ξ(Ci;P2) = 1/n, and hence for large enough h, |λ(Ci)− λ(C)/n| ≤ 45(hn)−1/2 diam(C)
√
λ(C)

or equivalently in terms of our second measure |µ2(Ci)− 1/n| ≤ 45(hn)−1/2 diam(C)/
√
λ(C).

Suppose we are seeking an ε-approximate equitable convex partition for our problem; that

is, a partition of C into n convex pieces where the second measure of each piece i has a rel-

ative error of size ε: |µ2(Ci)− 1/n| ≤ ε/n or written in terms of areas |λ(Ci)− λ(C)/n| ≤

ελ(C)/n. We can obtain an ε-approximate solution if we implement the above approach tak-

ing h ≥ ε−2n452(diam(C))2/λ(C). The total number of points used in theorem 3 is N = n+ hn =

n(1 + ε−2452(diam(C))2/λ(C)). Substituting into the complexity bound from theorem 3 we con-

clude that our algorithm takes

O(N4/3 log3N log n) = O(n4/3ε−8/3(diam(C))8/3(λ(C))−4/3 log3[nε−2(diam(C))2/λ(C)] log n)

(19)

time to find an ε-approximate solution to our problem.

Existence The above approximation algorithm lets us find an ε-approximate solution for arbi-

trarily small ε. With a little more work, we can show that a sequence of ε-approximate solutions

converges as ε ↘ 0 and hence show the existence of an exact equitable convex partition for our

problem.

Theorem 6. There exists an exact solution for our problem.

Proof Sketch. Let V be the set of convex partitions of C with n pieces and W := {(R1, . . . , Rn) ∈

V : pi ∈ Ri} the set of convex partitions such that piece i contains point pi. Now define a function

u : V → R on the set of convex partitions measuring the quality of approximate solutions, u(R) :=

maxnj=1 |λ(Rj)/λ(C)− 1/n|. Then we can generate using the above approximation algorithm a

sequence of approximate solutions, (Ci), in W of better and better quality, u(Ci)→ 0.
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Each edge in a convex partition in V is shared by two pieces of the partition, but due to

convexity each pair of pieces shares at most one edge. Hence each partition in V can be described

as a collection of at most n(n − 1)/2 edges. By explicitly parameterizing these edges we can

construct for some d a function h : Rd → V mapping some subset X of Rd to the set of convex

partitions giving approximate solutions, h(X) = W . Hence there exists a sequence (xi) in X such

that h(xi) = Ci. Then we will show that X is compact implying that the sequence (xi) has a

cluster point x∗ ∈ X. Finally we will show that the function λ ◦ hi taking the area of the ith piece

of h(x) := (h1(x), . . . , hn(x)) is continuous. Hence u ◦ h is continuous, implying that u ◦ h(x∗) = 0

and that C∗ = h(x∗) is an exact solution to our problem.

3 An Exact Algorithm

The ε−8/3 dependency of the approximation algorithm described in the previous section leads to

the question: is there a polynomial-time exact algorithm solving our problem? We construct such

an algorithm in this section.

Let N := m + n, and let (v1, . . . , vm) be the vertices of C listed in clockwise order. Our main

claim is that

Theorem 7. We can find an equitable convex partition of C and P in O(nN logN) time.

To prove this claim we need to introduce the concept of an equitable k-partition. An equitable

k-partition is a partition of C into k regions C = C1 ∪ C2 ∪ · · · ∪ Ck so that for i = 1, . . . , k, the

closure Ci is a convex polygon specified by its vertices in clockwise order; and the area of each

region is proportional to the number of points of P it contains, λ(Ci)/λ(C) = |P ∩ Ci| / |P |. A

ham sandwich cut is a line that bisects the area of C and has half the points of P on either side.

So when n is even, it creates an equitable 2-partition. Let q := bn/2c, and let H(`, x) denote the

open half-plane containing point x and whose boundary is line `.

Lemma 8. If n is even, we can find an equitable 2-partition of C and P (specifically a ham sandwich

cut) in O(N logN) time.
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Lemma 9. If n is odd, we can find in O(N logN) time either an equitable 2-partition, or an

equitable 3-partition where one polygon contains 1 point and the other two polygons contain q

points.

We are now ready to prove our main claim.

Proof of theorem 7. The idea is to apply lemmas 8 and 9 recursively. Applying either lemma to a

polygon of k vertices specified in clockwise order creates two or three polygons each with at most

k + 2 vertices specified in clockwise order. We need at most n − 1 applications of these lemmas.

Hence the polygons so generated will have at most m+ 2n− 2 vertices.

Note that both lemmas give O(N logN) complexity bounds when applied to C and P . So the

complexity of any application of either lemma while we search for an equitable convex partition is

at most O((n+m+ 2n− 2) log(n+m+ 2n− 2)) or KN logN for some absolute constant K. Since

there are at most n− 1 applications of these lemmas, the total complexity for finding an equitable

convex partition is O(nN logN).

We state lemma 10 without proof. The claims in lemma 10 follow from the fact that C is convex

and that its vertices are given in clockwise order.

Lemma 10. 1. In O(m) time we can calculate the area of C.

2. Given α ∈ (0, 1) and a point v on ∂C, we can find in O(m) time the unique point u 6= v on

∂C such that the area in C to the left of −→vu is αλ(C).

3. Given half-planes H1 and H2 we can specify the vertices of the convex polygon C ∩H1 ∩H2

in O(m) time.

4. Given line ` we can compute its intersection with the boundary of C in O(m) time.

Lemma 11. Consider two half-planes, H1 and H2, whose boundaries go through x ∈ C and whose

intersections with C have areas α1 and α2, respectively: α1 := λ(C ∩ H1) and α2 := λ(C ∩ H2).

Then for any α ∈ [α1, α2] we can find in O(m) time a half-plane H∗ between H1 and H2 (i.e.,

∂H∗ ⊂ (H14H2) ∪ {x}) cutting-off an area α = λ(C ∩ H∗). If the boundaries of the half-planes

intersect the same pair of edges, then we obtain a solution in O(1) time.
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Proof. Let f := ∂H1 ∩ ∂C ∩H2 be the point where half-plane H1 intersects C, and let (v1, . . . , vj)

and (w1, . . . , wk) be lists in clockwise order of the vertices of C in H2 \H1 and H1 \H2 respectively.

For each point v in either list, consider the half-plane H(←→xv, f). Then sort these half-planes by

angle into the list (S0 := H1, S1, . . . , Sj+k, Sj+k+1 := H2). This can be done in O(m) time because

the lists (v1, . . . , vj) and (w1, . . . , wk) are already sorted. Note that for i = 0, . . . , j+k, C∩Si \Si+1

and C ∩ Si+1 \ Si are just two triangles, and hence their areas (A−i and A+
i respectively) can

be computed in O(1) time. Since λ(C ∩ S0) = α1 we now iteratively compute Bi := λ(C ∩ Si)

for all i = 0, . . . , j + k + 1 in O(m) time. Since B0 ≤ α ≤ Bj+k+1, there exists i∗ such that

λ(C ∩ Si∗) = Bi∗ ≤ α ≤ Bi∗+1 = λ(C ∩ Si∗+1). Figure 2 illustrates this procedure.

If Bi∗ = α then H∗ := Si∗ and we are done. In the remainder of the proof assume Bi∗ < α. The

points of intersection ∂Si∗∩∂C and ∂Si∗+1∩∂C lie on the same pair of edges of C and form a convex

quadrilateral Q whose diagonals intersect at x. Let y1y2y3y4 be the vertices of Q listed clockwise

such that y1 = ∂Si∗ ∩ ∂C ∩ Si∗+1. Our candidate solution is the half-plane H∗ := H(←→rx, f) where

r := (1−β1)y1 +β1y2, β1 ∈ (0, 1] is a point on y1y2. The line←→rx intersects y3y4 at (1−β2)y3 +β2y4

where β2 = (1+K)β1
Kβ1+1 and K > −1 depends on the vertices of Q. The areas λ(C ∩H∗ \ Si∗) = β1A

+
i∗

and λ(C ∩ Si∗ \H∗) = β2A
−
i∗ . Solving λ(C ∩H∗) = α involves finding β1 solving

α = Bi∗ + β1A
+
i∗ −

(1 +K)β1
Kβ1 + 1

A−i∗ ,

0 = f(β1) := (β1A
+
i∗ − α+Bi∗)(Kβ1 + 1)− (1 +K)β1A

−
i∗ . (20)

This equation has a unique solution in (0, 1] because f(·) is a quadratic equation with f(0) =

−α+Bi∗ < 0 ≤ (Bi∗ +A+
i∗ −A

−
i∗ − α)(1 +K) = f(1).

Lemma 12. We are given half-plane H containing k ≤ n/2 points, k := |H ∩ P |, and an area too

small, λ(H ∩ C) ≤ λ(C)k/n. Then we can find in O(N logN) time an equitable 2-partition of C

and P .

Proof. Find the intersections of ∂H with ∂C in O(m) time. Label the points of intersection f and g

such that H is to the left of
−→
fg. We compute in O(m) time the half-plane Hg whose boundary goes

through g cutting-off an area of exactly λ(Hg ∩C) = λ(C)k/n and with an orientation opposite of

H (i.e., Hg doesn’t contain point f). Since k ≤ n/2 and λ(H ∩C) ≤ λ(C)k/n ≤ λ(C)/2, it follows
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(a) One half-plane cuts off an area
that is too big while the other cuts
off an area that is too small.

(b) Searching the circled vertices of C we
reduce the problem to an hourglass figure.

(c) Solving a quadratic equation gives us the correct half-
plane.

Figure 2: Lemma 11.

that H ∩ C ⊂ C \Hg.

Case 1 Hg contains more than k points, |Hg ∩ P | > k. Since
∣∣Hc

g ∩ P
∣∣ /λ(Hc

g ∩ C) ≤ n/λ(C) ≤

|H ∩ P | /λ(H ∩ C) we will attempt to find a half-plane between H and Hc
g creating an equitable

2-partition. For any point between the half-planes p ∈ P ∩ Hc
g ∩ Hc calculate the angle ∠fgp.

In O(n log n) time, sort these points by increasing angle into a list (p1, . . . , pj). From this list we

construct a sequence of half-planes, J0 := H, Ji := H(←→gpi, f) for i = 1, . . . , j, and Jj+1 := Hc
g . Note

Ji∩C ⊆ Ji′∩C for i ≤ i′. Now we perform a binary search to find i∗ such that Ji∗ cuts off too small

an area and Ji∗+1 cuts off too large an area, λ(Ji∗∩C)/(k+i∗) ≤ λ(C)/n ≤ λ(Ji∗+1∩C)/(k+i∗+1).

This takes O(m log n) time: O(log n) steps with each step taking O(m) time to find the area of
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Ji ∩ C. By construction there are no points of P between these two half-planes. We now in O(m)

time find through g a half-plane H∗ between them that cuts off an area λ(H∗∩C) = λ(C)(k+i∗)/n.

Since half-plane H∗ contains k + i∗ points, the polygons C ∩ H∗ and C \ H∗ form an equitable

2-partition. We then specify the vertices of the two polygons in O(m) time. Figure 3 illustrates

this case.

Figure 3: In case 1 we search for a half-plane H∗ through g creating an equitable 2-partition.

Case 2 Hg contains at most k points, |Hg ∩ P | ≤ k. In this case, we compute in O(m) time

the half-plane Hf whose boundary goes through f that contains g and cuts off an area of exactly

λ(Hf ∩C) = λ(C)k/n. Since H ∩C ⊆ Hf , we know that Hf contains at least k points. We assume

that Hf contains more than k points, since otherwise we have found an equitable 2-partition.

For any point v ∈ ∂C let Hv be the half-plane whose boundary goes through v that contains

g and cuts off an area of exactly λ(Hv ∩ C) = λ(C)k/n. Without loss of generality suppose

(v1, . . . , vj) are the vertices of C between f and g traversed clockwise. Based on this list, we define

a sequence of half-planes each cutting-off an area of λ(C)k/n, J0 := Hf , Ji := Hvi for i = 1, . . . , j,

and Jj+1 := Hg. Since Hf contains more than and Hg less than k points we can perform a binary

search to determine in O(logm) steps i∗ such that half-plane Ji∗ contains at least k points and

half-plane Ji∗+1 contains at most k points. Since each step takes O(n + m) time (O(m) time to

construct Ji and O(n) time to counts the number of points it contains) the binary search takes
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O(N logm) time. Figure 4(a) illustrates this binary search.

(a) Here Ji∗ = J2 cuts off at least and Ji∗+1 = J3
cuts off at most k points.

(b) We isolate w3 and w4 and label w1 the dotted circle on
∂Hw4 .

Figure 4: In case 2 we perform a binary search along the edges of C. In this example i∗ = 2.

Let h1 and h2 be the intersections of ∂Ji∗ and Ji∗+1 respectively with the other side of ∂C. Now

we apply a similar binary search to the vertices between h1 and h2 to isolate two points w3 and w4

sharing an edge (with w3 closer to h1 and w4 closer to h2). Finally, let Hw3 and Hw4 denote the

half-planes whose boundaries go through w3 and w4 respectively that cut off an area of λ(C)k/n

and contain point g. This is illustrated by figure 4(b).

By construction, both ∂Hw3 and ∂Hw4 intersect edge vi∗vi∗+1. Let w1 and w2 denote these two

intersection points, respectively; so that w1w2w3w4 forms a quadrilateral Q whose diagonals w1w3

and w2w4 cut off an area λ(C)k/n of C. Furthermore, Hw1 contains at least while Hw2 contains at

most k points. See figure 5(a) for a diagram.

We could continue the bisection procedure along the interval between w1 and w2 to find a point

w0 such that Hw0 contains k points and cuts off approximately an area λ(C)k/n — essentially an

equitable 2-partition. Instead we show how this can be done exactly.

Let p∗ be a point such that H(
←→
p∗v, g)∩C has an area of λ(C)k/n for any v ∈ w1w2. The point

p∗ is unique (if it exists), because it must lie on the boundary of Hv for all v ∈ w1w2 and these

lines are all different.

Note that for p ∈ Q, H(←→pv , g) with v = (1− α)w1 + αw2 and 0 ≤ α ≤ 1 is a half-plane cutting
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(a) The diagonals of the quadrilateral cut off
λ(C)k/n. Notice that Hw1 contains at least k
while Hw2 contains at most k points.

(b) The points P and the polygon C shown here differ slightly
from the previous figures. Notice that J0 contains more than k
points while J5 contains fewer than k. Half-planes between J2
and J3 (shown in red) contain k points and solve our problem.

Figure 5: The problem is reduced to a quadrilateral.

off an area λ(C)k/n iff α solves the quadratic equation a2(Q, p)α
2 + a1(Q, p)α + a0(Q, p) = 0

where the ai(·) are functions of p and the vertices of Q that can be evaluated in O(1) time. Let

P ∗ := P ∩Q \ {p∗}, and for p ∈ P ∗, let Hp and H ′p be those half-planes if they exist.

Let V be the union of Hw1 , Hw2 , and Hp and H ′p (when they exist) for p ∈ P ∗. This set, V

contains at most 2n+2 half-planes and can be computed in O(n) time. We then sort V in O(n log n)

time by the size of their intersection with w1w2 into a sequence of half-planes, (J1, . . . , Jj). Since

the points of P are in general position, we assume that the sets Hp and H ′p (if they exist) are

distinct for different p ∈ P ∗. Therefore, define pi to be the unique point from P ∗ on the boundary

of Ji. It turns out that for i = 2, . . . , j, |Ji ∩ P |− |Ji−1 ∩ P | equals −1 if pi−1 /∈ Ji and equals +1 if

pi−1 ∈ ∩Ji. Since |J0 ∩ P | ≥ k ≥ |Jj ∩ P | (noting that J0 = Hw1 and Jj = Hw2) and the number of

points in consecutive Ji differs by ±1, we can just iterate through 1, . . . , j in O(n) time to find i∗

such that Ji∗ contains exactly k points. Figure 5(b) illustrate this procedure. The polygons C ∩Ji∗

and C \ Ji∗ form an equitable 2-partition whose vertices can be specified in O(m) time.

Now we merely need to justify the claim that for i = 2, . . . , j, |Ji ∩ P | − |Ji−1 ∩ P | equals −1 if

pi−1 /∈ Ji and equals +1 if pi−1 ∈ ∩Ji. Equivalently we need to show that there are no points of P in

the interior of the triangles Ji4Ji−1. Clearly p∗ is not in the interior of Ji4Ji−1 because (if it exists)

it is on the boundary of both Ji and Ji−1. We will later show that (Ji4Ji−1) ∩ C ⊆ Q. Suppose

by contradiction that p ∈ P ∗ is a point in the interior of Ji4Ji−1. Note that λ(H(←→pui, g) ∩ C) ≤

λ(C)k/n ≤ λ(H(←−−→pui−1, g) ∩ C). Then by lemma 11, Hp exists and should be between Ji−1 and Ji
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in V∗. This contradicts our sorting of V∗.

Note that the boundaries of Ji and Ji−1 intersect w1w2 by definition. Hence to show that

(Ji4Ji−1) ∩ C ⊆ Q, it suffices to show that for any v ∈ w1w2, the boundary of Hv contains no

points from C \Q. Note that for any v ∈ w1w2, λ(H(←→vw3, g) ∩C) ≤ λ(C)k/n ≤ λ(H(←→vw4, g) ∩C).

Note that Hv is unique and has a boundary that intersects w3w4. This completes the proof.

Proof of lemma 8. Let (p1, . . . , pn) be the points P sorted by their y-coordinates. Using a selection

algorithm we can find in O(n) time the two median points of the list, pq and pq+1. Then let H be a

half-plane with a horizontal boundary that separates these two points: |H ∩ P | = q and |Hc ∩ P | =

q. We calculate in O(m) time the area of the fraction of C cutoff by H, α := λ(H ∩ C)/λ(C).

If this fraction is half, α = 1/2, then the half-plane boundary ∂H is a ham sandwich cut. The

convex polygons C∩H and C \H form an equitable 2-partition of C and P . We finish by specifying

the vertices of these two polygons in O(m) time.

If this is not the case then either H or Hc will cut off an area too small, λ(H ∩ C) < λ(C)/2

or λ(Hc ∩ C) < λ(C)/2. In that case we apply lemma 12 to obtain an equitable 2-partition.

This equitable 2-partition is a ham sandwich cut because we end up in case 2 of the proof of that

lemma.

Proof of lemma 9. Pick a vertex u of conv(P ) in O(n) time (e.g., just take the point with the

greatest y-coordinate). Next we use a selection algorithm to construct in O(n) time a line ` through

u such that q points lie to either side of `.

Let `L be the half-plane to the left and `R the half-plane to the right of line `. Label the resulting

halves of C, L := `L∩C on the left and R := `R∩C on the right. Find the upper point of intersection

of line ` and the boundary of C in O(m) time and label the point of intersection b as shown in

figure 6. We can find the area of L and R in O(m) time. We check that λ(L)/λ(C), λ(R)/λ(C) ∈

[ qn ,
q+1
n ].

If this is not the case, then, from λ(L) + λ(R) = λ(C) we have min{λ(L), λ(R)} < λ(C)q/n.

Thus, using lemma 12 (with k = q) we can find in O(N logN) time an equitable 2-partition. We

thus assume for the remainder of the proof that λ(L)/λ(C), λ(R)/λ(C) ∈ [ qn ,
q+1
n ].

In O(n) time we find the vertices of conv(P ) adjacent to u, uL ∈ L and uR ∈ R. Define half-

planes HL := H(←→uuL, b) and HR := H(←→uuL, b). This setup is illustrated again in figure 6. Calculate
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in O(m) time the area cutoff by these half-planes, λ(HL ∩C) and λ(HR ∩C). If either area is less

than or equal to λ(C)/n, then we apply lemma 12 (with k = 1) to find an equitable 2-partition.

For the remainder of this proof assume that both areas are strictly greater than λ(C)/n.

Figure 6: There are q points on either side of ` and the areas cutoff by HL and HR are greater
than λ(C)/n.

Calculate in O(m) time the area of L and R excluding the two half-planes HL and HR: that

is λ(L \HL), λ(L \HR), λ(R \HL), and λ(R \HR). We now examine three possible cases as we

compare these areas to λ(C)q/n.

Case 1 Suppose λ(L \HL), λ(R \HL) < λ(C)q/n or λ(L \HR), λ(R \HR) < λ(C)q/n. Without

loss of generality, assume that the first case is true. We are in a situation where Hc
L and `L are

half-planes whose boundaries intersect u and the areas they cut off bracket λ(C)q/n: λ(L∩Hc
L) <

λ(C)q/n ≤ λ(L∩ `L) = λ(L). We then find in O(m) time a half-plane JL through u cutting-off the

desired area, λ(L ∩ JL) = λ(C)q/n. Since JL is between Hc
L and `L, JL ∩ L ⊃ Hc

L ∩ L and hence

L ∩ JL contains q points (not counting u). This is illustrated by the left picture of figure 7.

The situation with R is symmetric: the boundaries of half-planes Hc
L and `R intersect u and

and λ(R ∩ Hc
L) < λ(C)q/n ≤ λ(R ∩ `R) = λ(R). We then find in O(m) time a half-plane JR

through u cutting-off the desired area, λ(R ∩ JR) = λ(C)q/n and containing the necessary points,

|P ∩R ∩ JR| = q (not counting u). This is illustrated by the right picture of figure 7. The convex

polygons L ∩ JL and R ∩ JR containing q points each, and C \ (JL ∪ JR) containing point u form
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an equitable 3-partition of C. We can specify the vertices of these polygons in O(m) time.

Figure 7: Finding half-planes JL and JR in case 1 such that the areas of JL ∩ L and JR ∩ R are
both λ(C)q/n.

Case 2 Suppose λ(R \ HR) < λ(C)q/n ≤ λ(R \ HL) or λ(L \ HL) < λ(C)q/n ≤ λ(L \ HR).

Without loss of generality assume the above holds for R. We now find in O(m) time a half-plane

SR through u cutting-off the desired area, λ(R∩ SR) = λ(C)q/n. Since SR is between HL and HR

it contains all the points, |P ∩ SR| = n. If λ(C \SR) < λ(C)/n, then apply lemma 12 (with k = 1)

as above. For the remainder of this proof assume the opposite.

(a) First choose SR between Hc
L and Hc

R. (b) Then choose SL between SR and `L.

Figure 8: Choosing SL and SR in case 2 such that the areas of SL∩L and SR∩R are both λ(C)q/n.

The first polygon of our equitable 3-partition will be R∩SR and contain q points (not including
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u). This is shown in figure 8(a). It follows that λ(L ∩ SR) ≤ λ(C)q/n, since C = (R ∩ SR) ∪

(C \ SR) ∪ (L ∩ SR) and λ(C \ SR) ≥ λ(C)/n and λ(R ∩ SR) = λ(C)q/n. As above we are in a

situation where λ(L∩ SR) ≤ λ(C)q/n ≤ λ(L∩ `L). We find in O(m) time a half-plane SL through

u cutting-off the desired area, λ(L∩SL) = λ(C)q/n and containing all the points of L. This region,

L∩SL, is the second polygon in the equitable 3-partition containing q points (not counting u). The

third polygon is C \ (SL ∪ SR) and contains point u. We then specify the vertices of the polygons

in O(m) time. This is illustrated in figure 8(b).

Case 3 In the remaining case suppose that either λ(L\HL) ≥ λ(C)q/n or λ(R\HR) ≥ λ(C)q/n.

Without loss of generality assume the above holds for R. For every point p ∈ P ∩R, determine in

O(n) time the angle of ∠ubp, and find the point w with maximum angle.

Let Hw := H(
←→
bw, u)c be the half-plane through b supporting conv(P ) at w. Calculate the area

cutoff by the half-plane Hw check that it is too large, λ(C ∩ Hw) > λ(C)/n. If not then we find

an equitable 2-partition using lemma 12 (with k = 1). Since λ(R) ≤ λ(C)(q + 1)/n it follows that

λ(R\Hw) < λ(C)q/n ≤ λ(R\HR) where both HR and Hw are half-planes supporting conv(P ∩R).

Hence there is some half-plane TR supporting conv(P ) between u and w that cuts off the right area,

λ(R \ TR) = λ(C)q/n. To find it we first determine in O(n log n) time all the edges of conv(P )

between u and w. We then perform a binary search among these edges to find in O(n log n) time

vertex x of conv(P ) such that one of the half-planes supporting conv(P ) along an edge of conv(P )

adjacent to x cuts off more than λ(R) − λ(C)q/n and the half-plane supporting conv(P ) along

the other edge adjacent to x cuts off less than λ(R) − λ(C)q/n. We now apply lemma 11 to find

a half-plane TR supporting conv(P ) at x with the desired area, λ(R \ TR) = λ(C)q/n. This is

illustrated in figure 9(a). Again we check that λ(C ∩TR) > λ(C)/n, otherwise we find an equitable

2-partition using lemma 12 (with k = 1). The first polygon of our equitable 3-partition is R \ TR

and containing q points (including u but not including x).

Since now λ(C ∩ TR) > λ(C)/n, λ(R \ TR) = λ(C)q/n, and C = (C ∩ TR)∪ (R \ TR)∪ (L \ TR)

we have λ(L\TR) < λ(C)q/n. Let y be the intersection of the boundary of TR and ` (note that y is

between u and b). Because λ(L∩T cR) < λ(C)q/n ≤ λ(L∩`L) we can find in O(m) time a half-plane

TL such that λ(L ∩ TL) = λ(C)q/n. This is illustrated in figure 9(b). Since TL is between T cR and

`L, L ∩ TL contains q points (not counting u). This gives us a three partition, L ∩ TL containing q
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(a) We find a half-plane TR supporting conv(P ) so that
the remaining area of R is λ(C)q/n.

(b) Now we find half-plane TL.

Figure 9: Case 3.

points (including u), C ∩ TR containing x, and R \ TR containing q points (including u but not x).

To conclude our proof we note that the vertices of the 3-partition can be found in O(m) time.

4 Extension to Nonuniform Densities

Here we note that the algorithm from the previous section extends easily to the case where µ2

is merely a probability measure with a density (provided we can evaluate µ2 efficiently). This is

because the algorithm is based on the ability to find a solution to the problem posed in lemma 11

(i.e., given half-planes H1 and H2 whose boundaries go through some point with µ2(H1) ≤ α ≤

µ2(H2), can we find an intermediate half-plane with measure α). In this extension, we may not

be able to find an exact solution analytically, but we can still find an ε-approximation (i.e., a half-

plane H∗ such that |µ2(H∗)− α| ≤ ε) using the bisection method in O(log 1
ε ) steps. The algorithm

from the previous section extended in this way takes O(n2 log n
ε ) steps and queries to µ2 to find an

ε-approximate equitable convex partition (where, similar to section 2, the second measure of each

piece is within a factor ε of 1/n). For the case considered in the previous section, theorem 7 gives a

tighter analysis by exploiting the fact that for a convex polygon S with k vertices we can calculate

λ(S) in O(k) time.
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5 Open Problems

Extending our algorithm for convex equitable partitions to higher dimensions is an open problem.

Based on the ham sandwich theorem we believe a convex equitable partition of Rd with respect to

d measures, µ1, . . . , µd, exists; we hope to find an algorithm that partitions Rd into n convex pieces

(R1, . . . , Rn) such that µi(Rj) = 1/n for all i and j. Consider, for example, a three-dimensional

convex polytope C containing ng blue points and nh red points. We believe there is a convex

partition of the polytope C where each piece contains g blue points, h red points, and the same

volume.

When we implement our algorithm we find that some of the pieces of the partition are long and

skinny as in figure 10. For many applications one would like the pieces to be not only convex but

also “fat” (i.e., to have small diameters). It would be interesting to explore how fat the individual

pieces can be made while still having an equitable convex partition or how fat the pieces can be

made if we allow their areas to be slightly unequal. For a related problem, Carmi and Katz (2005)

try to minimize the average distance between any point in C and its depot.

Figure 10: An equitable convex partition of a region with 2048 points.

We plan to work on problems found in applications that are similar to equitable convex parti-

tions. These applications include redrawing congressional districts and the efficient surveillance of
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an area with multiple vehicles. The robotics community has already developed some heuristics for

the latter problem (Jäger and Nebel, 2002).
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