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Abstract. There are three ways to determine the spectrum of a clinical photon
beam: direct measurement, modeling the source, and reconstruction from ion-chamber
measurements. We focus on reconstruction because the necessary equipment is readily
available and it provides independent confirmation of source models for a given
machine. Reconstruction methods involve measuring the dose in an ion chamber after
the beam passes through an attenuator. We gain information about the spectrum
from measurements using attenuators of differing compositions and thicknesses since
materials have energy dependent attenuation. Unlike the procedures used in other
papers, we do not discretize or parameterize the spectrum. With either of these two
approximations, reconstruction is a least squares problem. The forward problem of
going from a spectrum to a series of dose measurements is a linear operator, with the
composition and thickness of the attenuators as parameters. Hence the singular value
decomposition (SVD) characterizes this operator. The right singular vectors form a
basis for the spectrum, and at first approximation, only those corresponding to singular
values above a threshold are measurable. A more rigorous error analysis shows with
what confidence different components of the spectrum can be measured. We illustrate
this theory with simulations and an example utilizing six sets of dose measurements
with water and lead as attenuators.

1. Introduction

Knowledge of the photon energy spectrum is necessary for accurate dose calculation.

Sophisticated models of the accelerator head are used to deduce the emitted spectrum

by considering interactions with the target, collimators, jaws, etc. The most accurate

results are found using Monte Carlo simulation (c.f. Rogers et al. 1995). However, this

is only a simulation. An accurate way to experimentally determine the spectrum is with

a Compton scatter spectrometer (c.f. Landry & Anderson 1991). These however are

prohibitively expensive for most clinics.

The reconstruction of a spectrum from a set of ion-chamber measurements is a

third way to determine the photon energy spectrum. It complements physical models
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of various accelerator types by providing simple means to estimate the spectrum for

a particular linear accelerator and verify the model. Joseph (1975) was the first to

address this problem. Approaches appearing in the literature include Laplace transforms

(Baird 1981), simulated annealing (Nisbet et al. 1998), iterative least squares (Huang

et al. 1982), matrix inversion (Francois et al. 1993) and parameterization (Baker

et al. 1995, Hinson & Bourland 2002).

The contribution of this analysis, is to place spectrum reconstruction in the

framework of linear inverse problems. The key is that a linear operator relates the

spectrum to the measurements (even before any discretizations or approximations).

Hence we can apply the theory directly by treating the spectrum as a vector in Hilbert

space. Furthermore, we derive the sensitivity of the reconstruction from a model of

measurement errors.

2. Reconstruction

2.1. Formal Problem Statement

Typically an ion chamber is placed on the central axis of the beam, a large distance

from the source, with a known thickness and composition of attenuating material placed

in the beam path. The forward problem relates the spectrum, Φ(E), to the chamber

measurement, m, which has units of charge per monitor unit (MU):

m =

∫
Φ(E)κ(E)dE (1)

where κ(E) = N−1
D ESa,wµcap

en (E)ρ−1
cap exp[−µ(E)x − µcap(E)xcap]. We define Φ(E)dE

to be the number of photons with energy in [E, E + dE] per monitor unit per cm2 of

the collimated beam’s cross-sectional area. Here µ(E) is the attenuation coefficient for

photons with energy E and x the thickness of the attenuator. µcap and xcap refer to

the attenuation coefficient and thickness of the buildup cap around the ion chamber

while µcap
en refers to the absorption coefficient of the buildup cap. Sa,w is the air to water

stopping power ratio of secondary electrons passing through the chamber. Since, it is

close to unity for photon beams with maximum energy greater than 4 MeV (Baker et

al), it is a constant for a particular energy spectrum, and there is little variation of the

photon beam spectrum with attenuator thickness, we set it to unity. ρcap is the density

of the buildup cap. ND is the chamber calibration factor relating the dose (energy

deposited) to the measured charge. In general ND is a function of E. However, because

it varies by less than 5% (Almond et al. 1999) over the entire range of useful clinical

beam energies (0.5-24MeV), is constant for any particular photon spectrum, and the

spectrum varies only slightly with increasing attenuator thickness, ND is considered a

constant here. At these energies, ND ≈ 2.4×108Gy/C for our chamber. For the purpose

of this paper, the properties and thickness of the attenuator and buildup cap are known

parameters (c.f. Hubbell & Seltzer 1997). We regard Φ(E) and κ(E) as vectors, Φ and
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κ, in a Hilbert space with a standard inner product:

a∗b =

∫ Emax

0

ā(E)b(E)dE, (2)

where Emax is the largest photon energy of interest (e.g. we might know that the

spectrum is zero above 15MeV). In this notation, a∗ is the Hermitian conjugate of a

and ā(E) is the complex conjugate of a(E). We can then write (1) using (2) as m = κ∗Φ.

For n measurements, possibly using different depths and materials,

m = AΦ =




κ∗1
κ∗2
...

κ∗n


 Φ. (3)

Here A is a discrete-by-continuous linear operator. The goal of the inverse problem is

to find (or characterize) Φ given m. Tan and Fox (Tan & Fox n.d.) provide a nice

introduction to linear inverse problems.

In contrast to previous papers, we are leaving Φ(E) as a general function. Previous

work (c.f. Huang et al. 1982, Hinson & Bourland 2002) has either discretized or otherwise

parameterized Φ(E) using a finite number of parameters. In the case where Φ(E) is

discretized over l intervals, A is just a n x l matrix and Φ an l dimensional vector. If

l < rank A ≤ n, determining Φ from A is simply a least squares problem. The problem

is that the solution is sensitive to the choice of discretization and ceases to be uniquely

determined when l > n. For example consider the Elekta SLi 6MV spectrum calculated

using Monte Carlo simulation (Fippel et al. 2003). Using this spectrum we simulated

the forward problem assuming noise free measurements with 78 different attenuators

(i.e., n = 78 in equation 3): lead attenuators from 1 to 10 cm thick in 0.5 cm increments

and water attenuators from 1 to 30 cm thick in 0.5 cm increments. Figure 1 shows two

vastly different reconstructions of Φ(E) from these simulated measurements, neither of

which is close to the spectrum we assumed when simulating the measurements.

It is unclear how well the discretized, reconstructed spectrum, Φ̃ ∈ Rl, can

approximate Φ(E). Previous work estimates the accuracy of the reconstruction

algorithms using simulation experiments (Catala et al. 1995) or by computing dosimetric

beam properties (Nisbet et al. 1998). These methods do not provide an analysis of

how the errors propagate. In order to obtain a more accurate reconstruction and an

explicit error model, we will not discretize Φ(E). However, then we cannot ignore the

underdetermined nature of the problem by choosing l < n. The inverse problem is

inherently underdetermined since we are trying to reconstruct a function from a finite

number of measurements.

2.2. Review of SVD in a Hilbert Space

Any matrix, B, has a singular value decomposition

B =
∑

i

uiσiv
∗
i .
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Figure 1. assumed spectrum (Elekta SLi 6MV from Fippel et al. (2003)) and
reconstruction using evenly spaced grids of 3 and 4 points.

Here the left singular vectors {ui} form an orthonormal basis of the range of B; the right

singular vectors {vi} form an orthonormal basis of the domain of B; and the singular

values {σi} are positive. The index i goes from 1 to the rank of B. It follows that

Bvi = ui/σi. (4)

Note it is easy to check that BB∗ =
∑

i uiσ
2
i u

∗
i : the eigenvectors and eigenvalues of

BB∗ are {(ui, σ
2
i )}. In addition,

B∗ui = σivi. (5)

For our purposes, it is important that not just matrices but general linear operators

(operating on function spaces) have an SVD. Consider our operator A. Note its rank is

at most n. Hence its {vi} do not span the entire space of functions. To find its SVD,

we examine the n x n matrix AA∗:

(AA∗)ij = κ∗i κj =

∫ Emax

0

κi(E)κj(E)dE.
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(Note κi(E) is real.) Its eigenvectors and eigenvalues give us the left singular vectors,

{ui}, and the square of the singular values, {σ2
i }‡. The right singular vectors (which

form a basis of spectra) are vi = A∗ui/σi =
∑

j κj(ui)j/σi.

Note the null space of A has infinite dimension (another manifestation of the fact

that this problem is underdetermined). That means for any reconstructed spectrum, Φ̃

(such that AΦ̃ = m), there is a whole family of solutions: A(Φ̃+r) = m where Ar = 0

(i.e., r is in the null space of A).

2.3. Naive Reconstruction

The general idea of spectrum reconstruction is to write the dose measurements in the

basis {ui} (these being the left singular vectors of A),§
m =

∑
i

ciui. (6)

Then using (3) and (4), we divide the coefficients, ci, by the singular values and use

{vi} as the basis for the spectrum:

Φ ≈
∑

i

vici/σi =
∑

i

vi
u∗i m
σi

.

Ignoring measurement error for now, this would be exact if not for the null space of A:

Φ =
∑

i

vi
u∗i m
σi

+ r

where r in the null space of A. Since we have no information about the residual r we

assume r = 0 and so our reconstructed Φ is

Φ̃ :=
∑

i

vi
u∗i m
σi

. (7)

These terms define the pseudoinverse of A, a continuous-by-discrete linear operator:

Φ̃ = A+m where A+ :=
∑

i

viu
∗
i /σi.

The relation between the reconstructed spectrum Φ̃ and the actual spectrum Φ is

Φ̃ =
∑

i

vi
u∗i AΦ

σi

=
∑

i

vi

u∗i
∑

j ujσjv
∗
j Φ

σi

=
∑

i

viv
∗
i Φ.

This means Φ̃ is the projection of Φ onto the subspace spanned by {vi}. Alternative

assumptions on r are discussed later in the context of regularization. Figure 2 shows the

set of basis functions {vi} for an experiment involving no attenuator and attenuation

by water with depths 3.03, 14.58, and 29.38 cm and lead of thicknesses 1.54 and 2.81

cm, using an Emax = 6MeV in equation 2. Figure 3 is a reconstruction of an assumed

spectrum (the Monte Carlo simulated spectrum of Fippel et al. (2003)) by projection

onto the subspace spanned by {vi} of figure 2.

‡ For the remainder of the paper {ui}, {vi}, and {σi} will refer to the SVD of A.
§ If {ui} is not complete, then equation (6) is not an equality but a least squares problem. We ignore
this as it does not change the theory nor occur in practice.
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Figure 2. Basis functions.

2.4. Sensitivity Analysis

The projection of Φ onto the subspace spanned by {vi} in figure 3 gives a misleading

impression of the accuracy attainable from the measurements. This is because it

collapses the forward and inverse problems into an orthogonal projection, ignoring

measurement and numerical error. The third curve in figure 3 reconstructs Φ using

equation 7 from simulated measurements with relative error that is normally distributed

with mean zero and standard deviation 0.005.

For a large number of measurements, many σi are very small. This means that

the components of the spectrum Φ along the corresponding vi are “damped” to

insignificance by the measurement process; they make almost no contribution to the

measured values (along the corresponding ui). So when we reverse this process to

reconstruct the spectrum from measurements and divide the coefficients of the measured

values along ui by tiny σi we only amplify measurement error. In the simulated

reconstruction in figure 3, some of the σi are very small (see values given in figure

2). These terms are responsible for the poor reconstruction.
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Figure 3. An assumed spectrum (Elekta SLi 6MV from Fippel et al. (2003)), its
projection onto a basis defined by a set of measurements, {vi}, and a reconstruction
from simulated measurements with 0.5% relative error.

The dependence of the reconstructed spectrum on the measurement errors can be

made precise by looking at how Φ̃ varies with respect to small changes in m. This is

basically the derivative (or more precisely the Jacobian) of the inverse problem. As our

reconstruction is linear in m (7), the Jacobian is A+. The rate at which Φ̃(E) changes

due to variations in measurement i, is A+
Ei (i.e., “row” E and column i of A+). We are

often interested in the worst case: what is the largest change in Φ̃ that can result from

a small change in m? This is the matrix norm ‖A+‖ (we will use the 2-norm). Due

to properties of the SVD, ‖A+‖ = σ−1
n . If we are interested in relative changes, then

the condition number of A+ is appropriate, σ1/σn. Generally, σn decays exponentially

with n. So for large n, this condition number is huge and illustrates the ill-conditioned

nature of the problem.

Therefore, if σ1/σn is greater than the relative error of the measurements, then the

reconstruction may have errors of order 1 (i.e., be completely useless). A solution is to

only use in the reconstruction (7) the terms whose σi are sufficiently large. So a better
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reconstruction would sum only those terms in equation (7) which have values of σi above

some threshold, δ:

Φ̃ :=
∑
i∈I

vi
u∗i m
σi

I := {i : σi > δ}. (8)

We will denote this linear operator,

A+
I :=

∑
i∈I

viui/σi,

as it is a generalization of A+. Due to the above discussion, δ should be not be

smaller than the relative error of the measurements. Choosing δ (or equivalently I),

is a tradeoff between the information and noise included in the terms summed in the

reconstruction and a judgment of when the additional noise swamps or outweighs the

additional information.

Figure 4 shows the reconstruction of an assumed spectrum using the same

attenuators as in figures 2 and 3 from simulated measurements with 0.5% normally

distributed error. The various colors correspond to reconstructions with different

number of terms (i.e., different sizes of I). Solid lines show the average reconstruction

for a given I while the dashed lines show ± 1 standard deviations. (The average and

standard deviation were calculated from 15 replicas of each simulated measurement.)

Note how the dashed red lines are indistinguishable from the average reconstruction

using I = {1}. This shows how insensitive that reconstruction is compared to the last

reconstruction using I = {1, . . . , 6}. At high photon energies some of the reconstructions

in figure 4 are negative or increasing. This does not warrant concern as the large

standard deviations signify the reconstruction is very poor there (due to the uniformly

small size of the attenuation coefficients, µ, at high photon energies), but it does show

the importance of the error analysis.

2.5. Error Model

To see how error is affecting our reconstruction, we must first understand the origin of

the error and then incorporate it into our model of the measurement process (1). Errors

are often characterized as either absolute or relative. We propose to extend the model

of the measurement process to

m = (κ∗Φ + b∗Φ)(1 + εr) + εl (9)

where εr is a relative error term, εl is an absolute error term, and b∗Φ is a bias term.

The absolute error term, εl models the leakage current (i.e., random current

fluctuation) in the wire connected to the ion chamber. This is clearly an absolute

error as the current fluctuations are present even with the beam off. Their magnitude

is approximately 2× 10−14A. Modeling this as white noise (i.e., assuming independent

increments), the error in the measured charge (obtained by integrating white noise)
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Figure 4. Reconstruction of a spectrum (Elekta SLi 6MV from Fippel et al. (2003))
from simulated measurements with 0.5% relative error using different numbers of basis
functions. Dashed lines show ±1 standard deviation.

is a Brownian motion in time. Over t seconds, the error due to the leakage current

is 2 × 10−14
√

t C. The source for our measurements, an Elekta SLi, had a delivery

rate of approximately 500 MU/minute. So for a one minute measurement interval,

εl ≈ 3 × 10−16C/MU. By extending the experiment time, εl can be made arbitrarily

small since error increases with the square root of time, while the radiation (measured

in MU) increases linearly with time. Nevertheless, we include this term in our model

since for the one minute measurements we made, it is of comparable size to other terms,

especially those with large attenuation.

The term b∗Φ in (9) models the background : the radiation reaching the detector

that is not due to the primary beam. This is mainly radiation that leaks from the

machine head. Clearly the background radiation is linear in the total number of photons,

and hence linear in Φ. Therefore, we can model it as an inner product with some

(Hilbert space) vector b. This b may depend on any number of things: amount of

head shielding, beam energy etc. Nevertheless, we can determine its effect from the
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charge measured when the primary beam points away from the attenuators. We are

modeling this deterministically. For the 6MV beam of an Elekta SLi, we measured

b∗Φ ≈ 1.8× 10−15C/MU.

In our measurements using 6 and 15 MV beams and attenuators between 0 and

30 cm, m ranged from 10−12 to 10−15 C/MU. For the larger m, the 0.1%–1% variation

in repeated measurements of the same experimental setup cannot be explained by the

absolute error term εl and justifies a relative error term, εr in equation 9, between

10−2 and 10−3. These errors are due to phenomena such as thermal fluctuations in

the machine, that produce variations in the number of photons produced per MU.

Hence we assume εr is independent of the leakage current (and εl) and only multiplies

κ∗Φ+b∗Φ in equation 9. So for measurements with little attenuation, the relative error

εr dominates while for strongly attenuated measurements, the other two terms become

more important (though εl can be reduced by increasing the time that the beam is on).

2.6. Error Analysis

The above error model (9) can be extended to a set of measurements (like equation 3):

m = (I + R)(A + b∗)Φ + ε. (10)

We use  to denote a vector of ones and I to denote the identity matrix. Here R is

an n by n diagonal matrix R whose diagonal entries, R11 to Rnn, are independently

identically distributed (i.i.d.) with expectation 0 and represent εr for each of the n

measurements. The components of the n dimensional vector ε are also i.i.d. with

expectation 0 and represent εl for the n measurements. Since R and ε are random

variables, the measurements m and the reconstruction Φ̃ are too.

For our reconstruction to work we have to subtract out the background term, b∗Φ
so that the expectation equals AΦ and thereby matches the deterministic case (3).

As mentioned in section 2.5, we can take a measurement (or an average of a series of

measurements) of only the background,

mb := b∗Φ(1 + εr) + εl,

where εr and εl are random variables with expectation 0. Now we can define

m̃ := m−mb = AΦ + R(AΦ + b∗Φ)− εrb∗Φ + ε− εl. (11)

Clearly the expectation value of m̃, E[m̃] = AΦ as desired. So if we redefine our

reconstructed spectrum Φ̃ to use m̃ instead of m,

Φ̃ := A+m̃ =
∑

i

vi
u∗i m̃
σi

,

by linearity of expectations,

E[Φ̃] = A+AΦ =
∑

i

viv
∗
i Φ.

as in the deterministic case.
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We analyze the variance of Φ̃ (i.e., the reliability of the reconstruction) to give

a more complete picture than that provided by the sensitivity analysis of the inverse

problem.

Var [Φ̃] = Var [A+m̃] = (A+)2Var [m̃]. (12)

Here and in the remainder of the paper, squares of matrices, vectors, and operators

(such as (A+)2) refer to the square of their components. Now from equation 11,

Var [m̃] = Var [R](AΦ + b∗Φ)2 + Var [εr](b∗Φ)2 + Var [ε] + Var [εl]

Note m is an estimator for AΦ + b∗Φ, and mb is an estimator for b∗Φ. So,

Var [m̃] ≈ Var [R]m2 + Var [εr]m2
b + Var [ε] + Var [εl].

Substituting this into equation 12,

Var [Φ̃] ≈ (A+)2(Var [R]m2 + Var [εr]m2
b + Var [ε] + Var [εl]).

Setting Var [Rii] = 0.0052 and εr, ε, εl to 0, we can reproduce the one standard deviation

error bounds in figure 4 as expected.

2.7. Regularization

Recall that we arbitrarily chose the r = 0 in our reconstruction (7). In fact we could

have chosen any r as long as it is part of the null space of A. Regularization involves

choosing r such that

Φ̃ =
∑

i

vi
u∗i m
σi

+ r

looks more plausible. Note that regularization does not reveal any additional

information from our measurements, but is rather a way to include outside information

in our reconstruction. For example if we happened to choose by accident or using outside

knowledge, r := Φ−∑
i viv

∗
i Φ then our reconstruction would be perfect: Φ̃ = Φ. A more

plausible scenario is that we make a guess, Φ0, of Φ and choose r := Φ0 −
∑

i viv
∗
i Φ0.

Monte Carlo simulations of linear accelerators (Sheikh-Bagheri & Rogers 2002) show

that the peak of the spectra, Φ(E), is usually at 1–3 MeV. So we could choose Φ0

to have this property. This type of regularization is called truncated singular value

decomposition (TSVD). Regularization is a broad topic and we have only scratched the

surface (c.f. chapter 3 in Tan & Fox (n.d.) for other regularization methods). However,

as we do not know of any significant outside information to use in the reconstruction

our simple TSVD regularization should suffice. Figure 5 shows the reconstructions of

figure 4 regularized using a plausible Φ0, a piecewise linear function with a maximum

at 1 MeV. Another way to make our reconstructions look more plausible is to constrain

them to be nonnegative with a single maximum. r is then chosen accordingly.
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Figure 5. Reconstruction of a spectrum (Elekta SLi 6MV from Fippel et al. (2003))
with TSVD regularization.

2.8. Example

For the Elekta SLi we took two sets of measurements: one with the 6MV beam and one

with the 15MV beam. The gantry was rotated 90 degrees. The attenuating material was

placed on the couch 1m from the source (SSD=1m). A Scanditronix/Wellhöfer CC13

compact chamber (0.13 cm3 volume, 5.8 mm active length) was placed perpendicular to

the beam 478.5 cm from the source inside a “German Silver” buildup cap (density 8.9

g/cm3, 57% Cu, 29% Zn, 12% Ni, 19% Pb, ≤ 0.7% Mn, ≤ 0.3% Fe) with a radius of

15.6mm for 6MV and 30mm for 15MV. A field size of 1cm × 1cm was used. This was

sufficient for the beam to encompass the entire active area of the chamber. Exposures

using between 300 and 1000 MU were performed at a dose rate of 500 MU/min. For

6MV, attenuators of 3.03 cm, 14.58 cm, and 29.38 cm of waters and 1.54 cm and 2.81

cm of lead were used. For 15MV, attenuators of 14.50 cm, 28.34 cm, and 3.25 cm of

waters and 1.54 cm, 2.81 cm, 10.22 cm, and 5.05 cm of lead were used. In addition

measurements with no attenuators were made for both the 6 MV and 15 MV beams. A
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Figure 6. Reconstruction of the spectrum of a Elekta SLi 6 MV beam using different
numbers of basis functions. Dashed lines show ±1 standard deviation. The Monte
Carlo spectrum is from Fippel et al. (2003).

minimum of three measurements were made for each configuration. A leakage current

of 2 × 10−14A was found. The background radiation was measured to be 1.8 × 10−15C

and 7.3× 10−16C for 6 MV and 15 MV beams, respectively.

In figure 6 we compare the reconstruction from our measurements for the 6MV

beam to an estimate of the spectrum for the same beam using Monte Carlo simulation

of a physical model (Fippel et al. 2003). The spectrum calculated in Fippel et al. (2003)

is normalized, so only the shape of the reconstruction can be judged. In figure 6 the

curve labeled Monte Carlo spectrum is scaled to best match the reconstructions. Figure

7 tells a similar story for the 15 MV beam. Even though two more measurements

were taken for the 15 MV beam than for the 6 MV beam, the singular values decay

faster. A cutoff for the singular values (equation 8) of δ = 10−2 works well for both

reconstructions.

These reconstructions result from only a few sets of measurements, six for the

6 MV beam and eight for the 15 MV beam. Some of the discrepancy between the
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Figure 7. Reconstruction of the spectrum of a Elekta SLi 15 MV beam using different
numbers of basis functions. Dashed lines show ±1 standard deviation. The Monte
Carlo spectrum is from Fippel et al. (2003).

simulated spectrum and the reconstruction in figure 6 is due to the accuracy of the Monte

Carlo simulation and not reconstruction error. This is evident from differences found

in the calculation of the forward problem. Comparing the actual measurements (not

the reconstruction) to simulated measurements calculated using equation 1 assuming the

Monte Carlo spectrum of Fippel et al. (2003) represents our Elekta SLi, reveals a ±2.5%

discrepancy for the 6MV beam and a ±5.7% discrepancy for the 15MV beam. This is

after taking into account the normalization of the spectrum, and the background. While

not large, these discrepancies are an order of magnitude larger than the measurement

error (i.e., the variation among the replicas of each measurement). There are two

possibilities. Either the spectrum of Fippel et al. (2003) is not identical to (or not

an accurate enough approximation of) the true spectrum of our source or equation 1

does not accurately model the forward problem (e.g., perhaps the dependence of ND on

photon energy needs to be included). Further investigation is beyond the scope of this
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work.

3. Discussion and Conclusions

Generically more measurements will not improve the reconstruction. This is because

the reconstruction is limited by the number of large singular values. Generally the

singular values of matrix decay exponentially. More replications will help as they

reduce the noise and hence increase the range of singular values that are considered

“large”. Unfortunately, the noise decreases as r−1/2 where r is the number of replications.

Therefore, the gain from replications is often small (maybe one more singular value).

This is a difficulty with the problem, rather than with the reconstruction procedure.

One possible improvement in our reconstruction procedure is the use of regularization

as discussed in section 2.7.

On the premise that the reconstruction is limited by the problem and not the

algorithm, future research should focus on the optimal selection of measurements. With

careful choices of attenuators, the singular values of A may decay more slowly.
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