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The use of a stochastic dominance constraint to specify risk preferences in a stochastic program has been recently proposed in
the literature. Such a constraint requires the random outcome resulting from one’s decision to stochastically dominate a given
random comparator. These ideas have been extended to problems with multiple random outcomes, using the notion of positive linear
stochastic dominance. This article proposes a constraint using a different version of multivariate stochastic dominance. This version
is natural due to its connection to expected utility maximization theory and relatively tractable. In particular, it is shown that such
a constraint can be formulated with linear constraints for the second-order dominance relation and with mixed-integer constraints
for the first-order relation. This is in contrast with a constraint on second-order positive linear dominance, for which no efficient
algorithms are known. The proposed formulations are tested in the context of two applications: budget allocation in a setting with
multiple objectives and finding radiation treatment plans in the presence of organ motion.
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1. Introduction

A major challenge in using optimization to make risk-
averse decisions in the face of uncertainty is how to spec-
ify an acceptable level of risk. Recently, Dentcheva and
Ruszczyński (2003) have introduced and studied the con-
cept of a stochastic dominance constraint, which offers a
flexible approach to specifying risk preferences in an op-
timization model. The idea is that a decision-maker can
specify an acceptable random outcome (e.g., based on a de-
fault decision) and then the optimization model includes a
constraint that the outcome of the selected solution should
stochastically dominate the given random outcome. Specif-
ically, the model takes the form

min
x∈C

f (x),

s.t. G(x) � Y,
(1)

where f (x) is an objective (e.g., cost) to be minimized, G(x)
is a random outcome depending on x, and Y is a given
reference random variable. Thus, a decision-maker is as-
sured that the optimization model will produce a solution
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that is preferable in a strong sense to the specified ran-
dom outcome. This approach has been applied for finan-
cial portfolio optimization (Dentcheva and Ruszczyński,
2006), power system optimization (Gollmer et al., 2007),
and homeland security resource planning (Hu et al., 2011).

The notion of stochastic dominance can also be extended
to random vectors. This can be useful for a decision-making
setting that has multiple measures of interest (e.g., objec-
tives) that are random. Dentcheva and Ruszczyński (2009)
have used the notion of positive linear stochastic dominance
as a constraint in the multi-dimensional setting, which is
based on requiring one-dimensional dominance of any
nonnegative weighted combination of the different out-
comes. This model was generalized in Homem-de-Mello
and Mehrotra (2009) by limiting the considered weights to
within a specified set. Unfortunately, the models presented
in these papers are computationally demanding to solve.
In particular, even for the case of second-order stochas-
tic dominance, which induces a convex feasible region, the
algorithm of Homem-de-Mello and Mehrotra (2009) re-
quires solving to global optimality a subproblem that con-
tains nonconvex constraints arising from the difference of
convex functions.

In this article, we propose to use a different notion
of multivariate stochastic dominance as a constraint in
a stochastic optimization model. The definitions we use
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are based on the connection of stochastic dominance to
expected utility maximization theory and, for example, can
be found in Müller and Stoyan (2002). (Another resource
for information on stochastic dominance relations, also
known as stochastic orders, is Shaked and Shanthikumar
(2007).) Specifically, for d-dimensional random vectors Y
and W having finite expectations, the First-order Stochas-
tic Dominance (FSD) relation, denoted W �1 Y, holds if
E[u(W)] ≥ E[u(Y)] for all nondecreasing utility functions u
and the second-order stochastic dominance relation (SSD),
denoted W �2 Y, holds if E[u(W)] ≥ E[u(Y)] for all non-
decreasing concave utility functions u. Here nondecreasing
is with respect to the component-wise order in R

d . (FSD
and SSD are equivalent to what Shaked and Shanthikumar
(2007) call the usual stochastic order and the increasing con-
vex order, respectively.) Our primary motivation for using
this alternative model is computational tractability: using
this definition we are able to derive compact linear (for the
SSD case) and mixed-integer (for FSD) formulations when
W and Y have finite support. Consequently, the models we
present can be solved using off-the-shelf linear program-
ming (LP) and mixed-integer programming (MIP) solvers.
Recently, Haskell et al. (2013a) have investigated optimality
conditions and duality results for a related model in which
the condition E[u(W)] ≥ E[u(Y)] is required for all u in
a parameterized compact subset of all increasing concave
functions, thus obtaining a relaxation of the SSD relation.
A similar approach was taken by Haskell and Jain (2013)
when studying the use of stochastic order constraints in
Markov decision processes.

Another potential advantage of using the utility-based
FSD and SSD definitions is the natural interpretation: a
solution that satisfies such an FSD constraint would be pre-
ferred to the reference solution by any utility-maximizing
decision-maker, and a solution that satisfies such an SSD
constraint would be preferred by any risk-averse utility-
maximizing decision-maker. Of course, the potential draw-
back of such a strong definition is that it may severely
limit the set of feasible solutions. However, the flexibility in
setting the reference random outcome can be used to over-
come this drawback by simply using a lower quality random
outcome as the reference if necessary. Alternatively, our for-
mulations can readily be extended to a relaxed version of
the FSD and SSD constraints. In particular, Lizyayev and
Ruszczyński (2012) proposed a relaxed notion of the FSD
and SSD relations in the scalar setting and demonstrated
how formulations for SSD dominance can be modified to
model this relaxed condition. In Section 6 we discuss the
modifications required to our formulations to obtain an
analogous relaxation in the multivarate setting.

The first contribution of this article, aside from the model
itself, is the derivation of an LP formulation for an SSD
constraint and several MIP formulations for an FSD con-
straint. These formulations are similar in spirit to the ap-
proach taken in Luedtke (2008) for the scalar case, although
we find that deriving good MIP formulations for the mul-
tivariate FSD case is more challenging. We also provide

a specialized branch-and-bound algorithm for solving an
FSD-constrained problem.

The second contribution of this article is to conduct some
numerical examples on two applications. The first appli-
cation is a generic budget allocation model, inspired by
the homeland security application of Hu et al. (2011), in
which a limited budget must be allocated to a set of possible
projects and the allocation must stochastically dominate a
given benchmark allocation. The second application is in
radiation treatment planning and considers the uncertainty
induced by organ movement and other factors during treat-
ment. Here a multivariate stochastic dominance constraint
is attractive because there is no natural way to trade-off the
multiple objectives of providing sufficient dose to the target
(tumor) while limiting the dose to nearby critical organs.

One limitation of our work is that the formulations we
present require the random variables W and Y to have finite
support, and their size grows with the size of the support.
However, even if the supports of W and Y are not small
discrete sets, it may be possible to use sampling to ob-
tain approximate solutions. This approach approximates
the random variables W and Y by the more manageable
random variables, W(n) and Y(n) (e.g., the empirical dis-
tribution from n independent and identically distributed
samples). Then we solve the optimization problem Equa-
tion (1) with W(n) � Y(n) as the stochastic dominance con-
straint. This is motivated by theorem 3.3.10 in Müller and
Stoyan (2002): if W(n) → W and Y(n) → Y in distribution
and W(n) �1 Y(n) for all n, then W �1 Y. Theorem 3.4.6 in
Müller and Stoyan (2002) gives a similar result applying
to SSD. The use of Monte Carlo–based sample average ap-
proximation of stochastic dominance constraints within an
optimization model has been analyzed in Dentcheva et al.
(2007), Liu and Xu (2013), and Dentcheva and Römisch
(2013) for scalar stochastic dominance relations; in Hu
et al. (2010) for positive linear stochastic dominance; and
in Haskell (2011) and Haskell et al. (2013b) for multivariate
dominance relations very closely related to those used here.

In the next section we formally define our model and
state our assumptions, review some results that motivate
our approach, and discuss in more detail the relationship
between the stochastic dominance concept we use to that
used in previous work. Then in Section 3 we describe our
LP formulation for an SSD constraint, and in Section 4 we
describe the MIP formulations and the specialized branch-
and-bound algorithm for an FSD constraint. To illustrate
the feasibility of the models we present numerical examples
for our two applications in Section 5. Section 6 has our
concluding remarks.

2. Preliminaries

2.1. A comparison of multivariate stochastic dominance
relations

We first review the definitions of first- and second-order
stochastic dominance for the scalar case. The random
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variable W dominates Y in the first order, written W �1 Y,
if

FW(η) ≤ FY(η), ∀ η ∈ R, (2)

where FW(η) := Pr[W ≤ η] and FY(η) := Pr[Y ≤ η]. The
random variable W dominates Y in the second order, writ-
ten W �2 Y, if∫ η

−∞
FW(z)dz ≤

∫ η

−∞
FY(z)dz ∀ η ∈ R. (3)

Alternatively, for i = 1, 2, i th-order stochastic domi-
nance can be defined by W �i Y if

E[u(W)] ≥ E[u(Y)], ∀u ∈ Ui such that
the expectations exist, (4)

where U1 is the set of all nondecreasing functions u : R →
R, and U2 is the set of all nondecreasing and concave func-
tions u. These definitions are equivalent to those given by
Equations (2) and (3) for scalar random variables W and
Y; see, e.g., Whitmore and Findlay (1978).

Extension of these stochastic dominance concepts to ran-
dom vectors W and Y can be done in many ways. Dentcheva
and Ruszczyński (2009) used the notion of positive lin-
ear stochastic dominance for a stochastic dominance con-
straint and studied the corresponding optimization model.
W is said to dominate Y by i th-order positive linear
stochastic dominance, denoted W �lin

i Y, if v�W �i v�Y
in the usual sense of scalar i th-order dominance for all vec-
tors v ≥ 0. Homem-de-Mello and Mehrotra (2009) and Hu
et al. (2010) used a generalized version of this notion where
the weights v are constrained to lie in a convex set C. We
consider all vectors to be column vectors.

In contrast, the extension we use is based on the natural
extension of the Condition (4) used for the scalar case.
Specifically, for d-dimensional random vectors W and Y,
W �1 Y if Equation (4) holds with U1 replaced by Ud

1 , the
set of all nondecreasing functions u : R

d → R, where u is
nondecreasing if u(x) ≤ u(y) for all x, y ∈ R

d with x ≤ y.
Similarly, W �2 Y if Equation (4) holds with U2 replaced
by Ud

2 , the set of all nondecreasing and concave functions
u : R

d → R.
Figure 1 shows the relationship between the different

forms of multivariate stochastic dominance. Here �comp
i

refers to i th-order component-wise dominance, i = 1, 2.
Specifically, it is clear that first-order dominance implies
second-order dominance (in any version of multivariate
dominance) and also that the versions of first- and second-
order dominance that we use imply the corresponding pos-
itive linear dominance relations. We have found minimal
examples showing that these notions of dominance are
distinct and that no additional relationships among them
exist.

Since {W : W �2 Y} and {W : W �lin
2 Y} are convex and

Dentcheva and Ruszczyński (2003) introduced a linear
program for (scalar) second-order dominance constraints,
one hopes that these multivariate extensions are similarly

Fig. 1. Relationship between different notions of multivariate
stochastic dominance.

tractable. Unfortunately, �lin
2 does not appear to be: test-

ing whether v�W �2 v�Y for all v ≥ 0 when W and Y
have finite support can be formulated as a nonconvex opti-
mization problem, where the nonconvexity arises from the
difference of simple convex functions and the formulations
for Equation (1) in Homem-de-Mello and Mehrotra (2009)
and Hu et al. (2010) also require solving problems with
similar nonconvex structure to check feasibility.

2.2. Problem definition and assumptions

The models with stochastic dominance constraints we con-
sider are

min
x∈C

f (x)

s.t. G(x) �� Y
(5)

for � = 1 (FSD) or � = 2 (SSD). Here x represents our
decision vector, C defines the deterministic constraints on
x, f (x) is the objective to be minimized, G(x) maps the
decision vector x to a random vector in R

d , and Y is a given
reference random vector. The difference between this model
and the model introduced by Dentcheva and Ruszczyński
(2009) is that we use the stochastic dominance relations
based on Equation (4).

We are interested in a computational approach for find-
ing solutions to Problem (5), specifically, by devising LP and
MIP formulations of the stochastic dominance constraints.
We therefore assume that G(x) and Y have finite support,
taking values on g1(x), . . . , gN(x) and y1, . . . , yM, respec-
tively. (For each j , g j is a function into R

d and yj is a vector
in R

d .) This allows us to write Equation (5) as

min
x∈C, w j

f (x) (6a)

s.t. g j (x) ≥ w j ∀ j ∈ {1, . . . , N} (6b)
W �� Y, (6c)

where the w j are decision variables and the functions
g j (x) in Equation (6b) describe the random mapping G(x).
This allows us to create formulations of the dominance
Constraint (6c), W �� Y, where W is a discrete random
variable with Pr[W = w j ] = Pr[G(x) = g j (x)]. Thus, if
Equations (6a)–(6b) are an MIP and Equation (6c) can
be formulated with mixed-integer linear constraints (as we
show in the FSD case �1), then the entire optimization
problem is an MIP. Similarly, if Equation (6c) can be formu-
lated with linear constraints (as we show in the SSD case �2)
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and Equations (6a) and (6b) can be formulated as a convex
program (i.e., C is convex, f (x) is convex, and g j (x) are
concave), then the entire optimization problem is a convex
program.

Notation and conventions. Define N := {1, . . . , N},
M := {1, . . . , M}, K := {1, . . . , d}, qy(i ) := Pr[Y = y i ],
and qw( j ) := Pr[W = w j ]. Inequalities between vectors

are component-wise, D= denotes equality in distribution,
(x)+ := max{x, 0} represents the positive part of x, and I(·)
denotes the indicator function. Superscripts denote indices,
not exponents.

3. A formulation for SSD

In the scalar case, Definition (3) for second-order stochastic
dominance is equivalent to

E[(yi − W)+] ≤ E[(yi − Y)+], ∀i ∈ M, (7)

and Dentcheva and Ruszczyński (2003) observed that this
allows an SSD constraint to be formulated as a set of
linear constraints by introducing variables zi j to model
(yi − w j )+. However, this approach does not extend to the
multi-dimensional case because the Condition (7) does not
imply the second-order dominance relation we use (based
on Equation (4)). Nevertheless, as in the one-dimensional
case (Luedtke, 2008), when the underlying random vec-
tors have finite support, a special case of Strassen’s Theo-
rem (Strassen, 1965), given in theorem 2.6.6 of Müller and
Stoyan (2002), can be used to obtain a linear formulation
of SSD. We now state a convenient specialization of this
theorem.

Theorem 1 (Strassen). W �2 Y if and only if there ex-
ists random vectors W′ D= W and Y′ D= Y such that W′ ≥
E[Y′|W′] almost surely.

Corollary 1. Suppose W and Y are d-dimensional random
vectors with finite support w1, . . . , wN and y1, . . . , yM, re-
spectively. Then W �2 Y if and only if there exists pi j for
i ∈ M, j ∈ N such that∑

i∈M
yi pi j ≤ w j qw( j ), ∀ j ∈ N , (8a)

∑
j∈N

pi j = qy(i ), ∀i ∈ M, (8b)

∑
i∈M

pi j = qw( j ), ∀ j ∈ N , (8c)

pi j ≥ 0 ∀i ∈ M, j ∈ N . (8d)

The proof of this corollary is identical to that in Luedtke
(2008) for the case of scalar random variables, and fol-
lows from pi j = Pr[Y = yi , W = w j ]. We refer to formula-
tion (8) as SSDLP. This formulation has NM nonnegative
decision variables (beyond the w j ) and N + M + Nd con-
straints. Thus, the number of constraints in the formulation

increases linearly with the dimension d of the random vec-
tors and with the size of the support of the random vectors
W and Y.

3.1. First-order methods

Formulation (8) can be used directly by adding the associ-
ated constraints and variables to the model. However, if we
prefer to work in the space of the original variables x, we
can rewrite the stochastic dominance constraint in the form
h(x) ≤ 0, for a suitably defined function h. Specifically, we
define h(x) := inf{t : W(x) + t1 �2 Y} and then write the
original problem ((5) or (6)) as

min
x∈C

f (x)

s.t. h(x) ≤ 0.
(9)

Thus, as an alternative to SSDLP (8) we can tackle this
problem using first-order methods that only require evalu-
ations of h(x) and its subgradient ∂h(x). Using Equation
(8), we obtain

h(x) := min
t,pi j

t

s.t.
∑
i∈M

yi pi j ≤ (g j (x) + t1)qw( j ), ∀ j ∈ N ,

∑
j∈N

pi j = qy(i ), ∀i ∈ M, (10)

∑
i∈M

pi j = qw( j ), ∀ j ∈ N ,

pi j ≥ 0, ∀i ∈ M, j ∈ N .

Since this LP is feasible and the objective is bounded below,
taking the dual yields

h(x) = max
s j ,u i ,v j

∑
j∈N

(v j − s�
j g j (x))qw( j ) +

∑
i∈M

u i qy(i )

s.t.
∑
j∈N

(s�
j 1)qw( j ) = 1,

u i + v j ≤ s�
j yi ∀i ∈ M, j ∈ N ,

s j ≥ 0, ∀ j ∈ N .

(11)

The s j variables (s j ∈ R
d ) are the dual variables of the in-

equality constraints in Equation (10). For a given x, we can
solve Equation (10) or Equation (11) to evaluate h(x). Sup-
pose that the g j (x) are concave. Then from Equation (11),
h(x) is a pointwise maximum of convex functions. Hence,
h(x) is convex and −∑ j∈N (s∗

j
�∂ g j (x))qw( j ) ∈ ∂h(x),

where s∗
j optimizes the dual problem. Thus, when g j (x)

are concave, solving a simple LP allows us to evaluate
both h(x) and ∂h(x). This could be useful, for example,
in a cutting-plane algorithm where, instead of directly in-
troducing the pi j variables and Constraints (8) into the
formulation, the stochastic dominance constraint is en-
forced by dynamically adding linear inequalities.
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4. Formulations for FSD

In this section, we present a series of formulations for FSD.
The formulations are based on the following characteriza-
tion of FSD, given in theorem 3.4.2 of Müller and Stoyan
(2002).

Theorem 2. W �1 Y if and only if there exists random vectors
W′ D= W and Y′ D= Y such that W′ ≥ Y′ almost surely.

This yields the following nonlinear, nonconvex formulation
of FSD, which we subsequently use to derive a series of
mixed-integer linear formulations.

Corollary 2. Suppose W and Y are discrete d-dimensional
random vectors with finite support w1, . . . , wN and
y1, . . . , yM, respectively. Then W �1 Y if and only if there
exists pi j for i ∈ M, j ∈ N such that (8b)–(8d) hold and

pi j (w j − yi ) ≥ 0, for i ∈ M, j ∈ N . (12)

Before moving to the derivation of MIP formulations
for the FSD constraint, we comment on the possibility of
a nonconvex formulation that directly includes the Con-
straints (12). First, observe that Constraint (12) is equiva-
lent to the following set of linear complementarity condi-
tions:

w j + si j 1 ≥ yi , si j ≥ 0, pi j si j = 0, ∀i ∈ M, j ∈ N .

Although finding provable optimal solutions to problems
with linear complementarity constraints is difficult in gen-
eral, a number of approaches have been studied to find good
solutions (which cope with some of the technical difficul-
ties associated with the fact that “nice” constraint qualifi-
cations do not hold for this problem) (Luo et al., 1996). We
conducted some preliminary experiments using this formu-
lation in the nonlinear programming problem solver Knitro
but found that this approach was not competitive with the
other formulations.

4.1. Two compact MIP formulation (FSD1
and FSD1+SSD)

We derive our first MIP formulation by observing that the
Constraints (12) can equivalently be stated as

pi j > 0 =⇒ w j ≥ yi , ∀i ∈ M, j ∈ N . (13)

We model this with binary variables χi j , where χi j = 0 im-
plies pi j = 0 and χi j = 1 implies w j ≥ yi . Thus, we obtain
that W �1 Y if and only if there exists pi j and χi j for i ∈ M
and j ∈ N such that (8b)–(8d) hold and

pi j ≤ min{qw( j ), qy(i )}χi j , ∀i ∈ M, j ∈ N , (14a)

ymin + χi j ( yi − ymin) ≤ w j , ∀i ∈ M, j ∈ N , (14b)
χi j ∈ {0, 1}, ∀i ∈ M, j ∈ N , (14c)

where ymin is the component-wise minimum of {yi }. We
refer to this MIP formulation as FSD1.

A disadvantage of FSD1 are the “big-M” type of con-
straints in Equation (14b), which are likely to lead to weak
LP relaxations. This disadvantage can be significantly al-
leviated by including the Inequalities (8a). The following
theorem justifies that this can be done.

Theorem 3. W �1 Y if and only if there exists pi j and χi j for
i ∈ M and j ∈ N such that Equation (8) and (14) hold.

Proof. Assume that W �1 Y. From Corollary 4.2 there ex-
ists pi j such that Equations (8b)–(8d) and Equation (12),
and recall that Equation (12) implies Equation (13). Let
χi j = 1 if pi j > 0 and χi j = 0 otherwise. Then by Equation
(13), χi j and pi j satisfy Equation (14). We show pi j also
satisfy Equation (8a). Summing Equation (12) over i ∈ M
yields

0 ≤
∑
i∈M

pi j (w j − yi ) = w j qw( j ) −
∑
i∈M

yi pi j

by Equation (8c), and hence Equation (8a) is satisfied.
The reverse implication is immediate from validity of the

FSD1 formulation. Specifically, if there exists pi j and χi j
for i ∈ M and j ∈ N that satisfy Equations (8b)–(8d) and
Equation (14) then pi j > 0 implies χi j = 1 by Equations
(14a) and (14c). Then, χi j = 1 implies w j ≥ yi by Equation
(14b) and so Equation (12) is satisfied and the result follows
from Corollary 2. �

We refer to the formulation of Theorem 3 as FSD1+SSD.
Because this formulation includes all of the variables and
constraints of the SSDLP formulation, the LP relaxation
yields a bound at least as strong as the bound obtained from
the SSD relaxation, relaxing the FSD constraint W �1 Y
to an SSD constraint W �2 Y. For scalar stochastic domi-
nance constraints it has been shown that the SSD relaxation
is often good (Noyan et al., 2006). Furthermore, for an im-
portant special case in which W and Y take on all values
with equal probability, we show in Section 4.4 that the SSD
relaxation is in a sense as good as can be achieved.

Formulation FSD1+SSD still has two potential disad-
vantages. First, although the relaxation is strengthened by
the addition of Constraint (8a), the “big-M” Constraints
(14b) are still required. This may cause slow improvement
in the bound when branching. To address this concern, we
present in Section 4.2 an MIP formulation in which the nat-
ural LP relaxation itself is as strong as the SSD relaxation.
The second disadvantage of formulation FSD1+SSD is
that it has (d + 1)NM constraints in Equations (14a) and
(14b), which grows large if both N and M are large. In
contrast, the SSDLP formulation has NM variables but
only O(M + d N) constraints. One option to deal with this
disadvantage is to handle the logical Conditions (13) al-
gorithmically, rather than reformulating them as we have
done. We discuss this option in detail in Section 4.3.
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4.2. A strong formulation in an extended space (FSD2)

We now present a formulation for W �1 Y that successfully
avoids the “big-M” Inequalities (14b) and as a result has a
strong LP relaxation without the need to add Constraints
(8a). The disadvantage of this formulation is its large size: it
has NM continuous variables, NMd binary variables, and
2Nd + NMd constraints.

Theorem 4. W �2 Y iff there exists pi j for i ∈ M, j ∈ N
and zi jk ≥ 0 for i ∈ M, j ∈ N , k ∈ K satisfying Equations
(8b)–(8d), and

∑
i∈M

yi
kzi jk, ≤ w

j
k, ∀ j ∈ N , k ∈ K, (15a)

∑
i∈M

zi jk = 1, ∀ j ∈ N , k ∈ K, (15b)

∑
l∈M

pl j I(yl
k ≥ yi

k) ≤ qw( j )
∑
l∈M

zl jkI(yl
k ≥ yi

k),

∀i ∈ M, j ∈ N , k ∈ K. (15c)

Furthermore, W �1 Y iff the above conditions hold and zi jk ∈
{0, 1} for all i ∈ M, j ∈ N , k ∈ K.

Proof. To prove the first claim, start by assuming that
W �2 Y. Corollary 1 then implies that there exists pi j such
that Equation (8) hold. Then, choosing zi jk = pi j/qw( j ) en-
sures that Equation (15c) holds, and Equation (15b) holds
by Equation (8c). Finally, Equation (15a) holds due to
Equation (8a).

To prove the converse, that W �2 Y given the assump-
tions, we show that Equation (8a) holds and thus Corol-
lary 1 applies. Fix j ∈ N and k ∈ K; let σ be a permutation
of M such that

yσ (1)
k ≤ yσ (2)

k ≤ · · · ≤ yσ (M)
k , (16)

and define yσ (0)
k = yσ (1)

k . Then we have

qw( j )w j
k ≥ qw( j )

∑
i∈M

yσ (i )
k zσ (i ) jk by (15a)

= qw( j )
∑
i∈M

zσ (i ) jk

(
yσ (0)

k +
i∑

l=1

(
yσ (l)

k − yσ (l−1)
k

))

= qw( j )yσ (0)
k + qw( j )

∑
l∈M

(
yσ (l)

k − yσ (l−1)
k

) M∑
i=l

zσ (i ) jk

by (15b)

≥ qw( j )yσ (0)
k +

∑
l∈M

(
yσ (l)

k − yσ (l−1)
k

) M∑
i=l

pσ (i ), j by (15c)

= qw( j )yσ (0)
k +

∑
i∈M

pσ (i ), j

j∑
l=1

(
yσ (l)

k − yσ (l−1)
k

)

= qw( j )yσ (0)
k +

∑
i∈M

pσ (i ), j

(
yσ (i )

k − yσ (0)
k

)

=
∑
i∈M

pσ (i ), j yσ (i )
k by (8c),

which proves that Equation (8a) holds.
Now we turn to the second claim. First assume that

W �1 Y. Then, by Corollary 2, there exists pi j such that
Equations (8b)–(8d) and (13) hold. Since W is supported
at w j , Equations (8c) and (13) imply that there exists
i such that yi ≤ w j . Thus, for each j ∈ N and k ∈ K,
we can choose n( j, k) from arg maxi {yi

k : yi
k ≤ w

j
k}. Set

zi jk := I(i = n( j, k)). Then Equations (15a) and (15b) are
satisfied. For each i jk, if

∑
l∈M pl j I(yl

k ≥ yi
k) = 0, then

Equation (15c) holds. If, however,
∑

l∈M pl j I(yl
k ≥ yi

k) > 0,
then there exists l with yl

k ≥ yi
k and pl j > 0. Then Equation

(13) implies w
j
k ≥ yl

k for all k ∈ K. Thus, yn( j,k)
k ≥ yl

k ≥ yi
k

and

qw( j )
∑
l∈M

zl jkI
(
yl

k ≥ yi
k

) = qw( j ) ≥
∑
l∈M

pl j I
(
yl

k ≥ yi
k

)
,

(17)
where the last inequality follows from Equation (8c). This
shows that Equation (15c) holds.

To prove the converse, that W �1 Y given the assump-
tions, we show that Equation (13) holds, thus satisfying
Corollary 2. Consider an arbitrary i ∈ M and j ∈ N . If
pi j = 0, then Equation (13) holds trivially. If pi j > 0, then
Equation (15c) implies that

qw( j )
∑
l∈M

zl jkI
(
yl

k ≥ yi
k

) ≥ pi j > 0, (18)

and hence by Equation (15b) and zi jk ∈ {0, 1},∑
l∈M

zl jkI
(
yl

k ≥ yi
k

) = 1. (19)

Thus, yi
k = ∑

l∈M zl jkyi
kI(yl

k ≥ yi
k) ≤ ∑

l∈M zl jkyl
k. Then

Equation (15a) implies w
j
k ≥ yi

k for all k ∈ K, proving
Equation (13). �

When modeling W �1 Y, according to Equations, (15a)
and (15b) the binary variables zi jk are used to determine, for
each j ∈ N and each component k ∈ K, the scenario i ∈ M
with maximum value of yi

k for which yi
k ≤ w

j
k holds. A dif-

ferent set of these variables is necessary for each compo-
nent k ∈ K since for a given j ∈ N , the scenario i ∈ M that
achieves this maximum may be different in different com-
ponents. With the binary variables zi jk so defined, Equation
(15c) is then used to formulate Equation (13).
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The size of this formulation is driven primarily by the
NMd inequalities in Equation (15c), which furthermore
have a total of O(NM2d) non-zeros. An equivalent for-
mulation in which the number of non-zeros is reduced to
O(NMd) can be obtained by using a different set of binary
variables ẑi jk related to the variables zi jk as follows:

ẑi jk =
∑
l∈M

zl jkI
(
yl

k ≥ yi
k

)
and also introducing continuous variables p̂i jk that are re-
lated to the pi j variables by

p̂i jk =
∑
l∈M

pl j I
(
yl

k ≥ yi
k

)
.

These relations can be achieved by increasing the number
of constraints by only a constant factor, while reducing the
total number of non-zeros to O(NMd); the Inequalities
(15c) reduce to p̂i jk ≤ qw( j )ẑi jk. However, in our experi-
ments, this reformulation performed slightly worse than
the original.

4.3. A specialized branch-and-bound method

As described in Section 4.1, a formulation for FSD is∑
i∈M

yi pi j ≤ w j qw( j ), ∀ j ∈ N , (20a)

∑
j∈N

pi j = qy(i ), ∀i ∈ M, (20b)

∑
i∈M

pi j = qw( j ), ∀ j ∈ N , (20c)

pi j ≥ 0 ∀i ∈ M, j ∈ N , (20d)

and the logical conditions

pi j > 0 =⇒ w j ≥ yi , ∀i ∈ M, j ∈ N . (21)

Such a logical formulation can be implemented directly
in IBM Ilog CPLEX using indicator constraints (specifi-
cally, with “IloIfThen” constraints), but we found that this
performed worse than the MIP formulations presented in
Section 4.1. We therefore explored a specialized branch-
and-bound (BnB) method for solving this formulation. The
idea of the BnB algorithm is to use the relaxation defined
by the linear Constraints (20) and then use branching to
enforce the logical Conditions (21) by updating bounds on
the variables pi j and w j .

At any node n in the branch-and-bound method tree we
have upper bounds Ui j (n) on the pi j variables and lower
bounds L j (n) on the w j variables and solve the following
node relaxation

lb(n) := min
x∈C,w j ,pi j

f (x)

s.t. g j (x) ≥ w j , w j ≥ L j (n), ∀ j ∈ N ,
(22)

pi j ≤ Ui j (n), ∀i ∈ M, j ∈ N ,

and Equation (20).

At the root node, n = 0, we set Ui j (0) = min{qy(i ), qw( j )}
and L j (n) = ymin so that none of these bounds constrain
pi j or w beyond the relaxation (20). After solving Equation
(22) at each node n, we first check whether lb(n) exceeds
the objective value of the best feasible solution found so
far; if so, we can prune this node and choose a different
node to process. Otherwise, we check whether the relax-
ation solution ( p̄, w̄) satisfies the logical Conditions (21).
If so, the solution is feasible and the solution and its objec-
tive value lb(n) are saved as the current incumbent. If not,
we branch by choosing an (i, j ) pair that violates Equa-
tion (21). In our implementation we selected (i∗, j∗) that
maximizes the quantity p̄i j (1� max{yi − w̄ j , 0}). We then
create two new nodes, indexed by c1 and c2, by enforc-
ing pi∗ j∗ = 0 in c1 (implemented by setting Ui∗ j∗(c1) = 0)
and by enforcing w j∗ ≥ yi∗

in node c2 (implemented by set-
ting L j∗

(c2) = max{L j∗
(n), yi∗ }). The algorithm terminates

when there are no more nodes to explore. This branch-and-
bound algorithm is correct because no feasible solution is
ever excluded from the search space and terminates with
the optimal solution if one exists because there are only
finitely many logical conditions that can be enforced.

4.3.1. Heuristic
We also derived a simple heuristic that can be used in con-
junction with this BnB algorithm to help it find feasible
solutions more quickly. The heuristic uses the values w̄j

of a relaxation solution, potentially from any node in the
search tree, as an input. The first step is to solve the problem

min
pi j

∑
i∈M, j∈N

(1� max{yi − w̄ j , 0})pi j ,

s.t. (20b) to (20d).
(23)

Given an optimal solution p̂ of this problem, we then set
lower bounds on the w j variables that would make w j

and p̂i j satisfy Equation (21). Specifically, we set the lower
bound for each component w

j
k to L̄ j

k = maxi {yi
k : p̂i j > 0}.

We then solve the problem

min
x∈C

f (x)

s.t g j (x) ≥ L̄ j , ∀ j ∈ N .
(24)

By construction, any feasible solution to this problem sat-
isfies the stochastic dominance constraint and is feasible
in the original problem. The heuristic fails if no feasible
solution to this problem is found.

4.4. A special case (FSD3)

When N = M and all of the outcomes are equally likely
(as they would be, for example, when obtained from ran-
dom sampling), then we have a simpler and more compact
formulation for W �1 Y, whose linear relaxation implies
W �2 Y and is equivalent to SSDLP. This formulation
has only N2 binary variables and 2N + Nd constraints.
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Furthermore, in this case of equally likely outcomes, we
can show that the set of random variables dominating in
second-order dominance is the convex hull of those domi-
nating in first-order dominance.

Theorem 5. Suppose that N = M and qy(i ) = qw(i ) = 1/N
for all i ∈ N . Then

1. W �1 Y if and only if there exists pi j ∈ {0, 1} ∀i ∈
M, j ∈ N such that:

∑
j∈N

pi j = 1, ∀i ∈ M, (25a)

∑
i∈M

pi j = 1, ∀ j ∈ N , (25b)

∑
i∈M

yi pi j ≤ w j , ∀ j ∈ N , (25c)

2. W �2 Y if and only if there exists pi j ≥ 0 for i ∈ M, j ∈
N such that Equation (25) holds.

3. conv{W : W �1 Y} = {W : W �2 Y}.

We omit the proof of claims 1 and 2 since they are anal-
ogous to that of theorem 4 in Dentcheva and Ruszczyński
(2004) for the scalar case. Because the Constraints (25a)
and (25b) and pi j ≥ 0 define the set of doubly stochastic
matrices, claim 3 follows immediately from claims 1 and 2
and the fact that the set of doubly stochastic matrices is
the convex hull of the set of permutation matrices (i.e., the
Birkhoff-von Neumann theorem; see, e.g., Marshall et al.
(2011)).

5. Numerical illustrations

5.1. A budget allocation model

We first study the behavior of these formulations to solve
a simple budget allocation problem, inspired by the model
of Hu et al. (2011) for homeland security budget alloca-
tion. Given a fixed budget, the problem is to determine
what fraction of the budget to allocate to a set of candidate
projects, t ∈ T with |T | = T. The quality of a budget al-
location is characterized by d distinct objectives, for which
larger values are preferred. Each project t ∈ T is character-
ized by a d-dimensional random vector of reward rates Rt
for these objectives. Thus, given a feasible budget allocation
x ∈ C := {x ∈ R

T
+ : x�1 = 1}, the values of the d objectives

is
∑

t∈T Rt xt. We assume that we are given a d-dimensional
random vector Y that indicates a minimal acceptable joint
performance of these objectives, and we require the per-
formance of the chosen budget allocation to stochastically
dominate Y. Subject to this condition, the goal is to maxi-
mize a weighted combination of the expected values of the

measures

max
x∈C

∑
t∈T

v�
E[Rt]xt

s.t.
∑
t∈T

Rtxt �� Y,
(26)

where v ∈ R
d
+ is a given weight vector and � ∈ {1, 2}

determines if we wish to enforce first or second-order
dominance.

For our test instances, we assumed that our reward rates
R̄ := [R�

1 R�
2 · · · R�

T ] are one of N equally likely scenarios
{R̄j : j ∈ N } sampled from a joint normal distribution with
mean μ and covariance matrix �. (Thus qw( j ) = 1/N.)
The components of μ are chosen randomly from U[10, 20]
and the covariance matrix � was calculated as follows.
The coefficient of variations were chosen from U[0.2, 1.1].
The correlations of any two distinct elements (t, k) and
(t′, k′) were chosen from U[−0.2, 0.4] if they share a project
(t = t′) and from U[−0.1, 0.1] if they share an objective
(k = k′) and were zero otherwise. The benchmark random
vector Y was determined from an allocation in which all
projects are allocated an equal fraction of the budget but
to avoid being overly conservative, was then reduced by
a fixed fraction δ of its mean. Specifically, given realiza-
tions R j

t ∈ R
d , for each scenario j and project t, realiza-

tion j of Y has probability qy( j ) = 1/N and is given by
Y j = B j − δ( 1

N

∑N
k=1 Bk) where B j = 1

T

∑
t∈T R j

t . In our
experiments, we found that using δ = 0.1 allowed sufficient
flexibility in the stochastic dominance constraint that a so-
lution significantly better than the base allocation in terms
of the objective could be found. Finally, we weighted all
objectives equally in the objective v = 1. All tests in this
section were done using CPLEX 12.2 on a Mac Mini run-
ning OSX 10.6.6 with a two-core 2.66 GHz processor and
8 GB RAM and with the number of threads limited to one.

Table 1 shows the computation times to solve these
instances using the SSD from Section 3. For these ex-
periments, we varied the number of objectives d ∈ {3, 5},
the number of projects T ∈ {50, 100}, and the number of
scenarios N = M ∈ {100, 300, 500}. For each combination
of these parameters we display the average computation
time in seconds over five instances at that size. These re-
sults indicate that with this formulation it is possible to
solve instances with a relatively large number of scenarios,

Table 1. Average solution times in seconds of five in-
stances using formulation SSDLP

(d,T ) N = 100 N = 300 N = 500

(3, 50) 0.3 12.3 86.2
(3, 100) 0.3 8.9 61.6
(5, 50) 0.6 37.8 181.8
(5, 100) 0.7 23.0 105.6
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Table 2. Average solution times in seconds (instances solved) of five instances for different FSD formulations

(d, T) N FSD1 FSD1+SSD FSD2 BnB FSD3

(3, 50) 50 194.7 (2) 78.9 (5) 205.8 (4) 32.2 (5) 3.2 (5)
100 — (0) 398.8 (1) — (0) — (0) 56.5 (5)
150 — (0) — (0) — (0) — (0) 222.9 (5)

(3, 100) 50 283.3 (2) 28.7 (5) 124.2 (5) 14.9 (5) 1.5 (5)
100 — (0) 90.3 (2) — (0) 47.8 (2) 12.5 (5)
150 — (0) — (0) — (0) — (0) 114.3 (5)

(5, 50) 50 — (0) 350.8 (3) — (0) 357.2 (1) 41.1 (5)
100 — (0) — (0) — (0) — (0) 581.2 (1)
150 — (0) — (0) — (0) — (0) — (0)

(5, 100) 50 — (0) 153.9 (4) 594.1 (1) 41.9 (2) 8.9 (5)
100 — (0) — (0) — (0) — (0) 304.7 (5)
150 — (0) — (0) — (0) — (0) 390.4 (1)

although the computation time does grow significantly with
the number of scenarios.

For the FSD formulations, because M = N and all
outcomes are equally likely, we can use the formulation
FSD3 of Section 4.4 for this special case. However, we
also tested the generally applicable formulations of Sec-
tion 4 to gain insights into the relative performance of
these. As we expect the number of different objectives to
be small, we used d ∈ {3, 5}. We also tested the number of
projects to be T ∈ {50, 100} and the number of scenarios
to be N = M ∈ {50, 100, 150}. We solved these instances
with FSD1, FSD1+SSD, FSD2, BnB (the specialized
branch-and-bound algorithm of Section 4.3), and FSD3.
In BnB, we implemented the heuristic within a CPLEX
heuristic callback, which called it occasionally throughout
the branch-and-bound tree, but we were unable to control
the frequency. For each set of parameters we generated five
instances and used a time limit of 10 minutes for these
experiments.

Since the benchmark random vector is constructed based
on a particular allocation, these problems are feasible by
construction. However, in some cases CPLEX failed to find
a feasible solution using these formulations within the time
limit. To make the results more informative and to reduce
variability caused by the time at which a feasible solution
is found with one of the formulations, we supply the base
allocation as a starting feasible solution to all the instances.

Tables 2 and 3 present the average solution times (in
seconds) and the average final optimality gaps after the
time limit; the number of instances solved within the time
limit is reported in parantheses in Table 2. The optimality
gap for an instance is calculated as (ub − lb)/ub, where ub
is the best upper bound obtained by the method in the time
limit, and lb is the value of the best feasible solution found
in the time limit. Instances that were solved to optimality
are included in the average gap calculation.

The first observation from these tables is that FSD3,
which exploits the property that M = N and all scenarios
are equally likely, performs much better than the other for-

mulations and, in particular, solves most of the instances
to optimality within the time limit, with the exception of
the instances with d = 5 objectives and T = 50 projects,
which appears to be the most difficult combination of pa-
rameters. We also see that adding inequalities (8a) to FSD1
to obtain FSD1+SSD helps significantly, in terms of the
number of instances that can be solved in the time limit,
the average solution time of the solved instances, and the
final average optimality gaps. FSD2 is too large to be prac-
tical for these test instances, as many fewer instances are
solved to optimality and even the LP relaxation often fails
to solve within the time limit. The BnB performs favorably
compared with FSD1+SSD for the instances with d = 3
but solves fewer instances to optimality when d = 5. How-
ever, in general this specialized algorithm yields the lowest,
or close to the lowest, average optimality gaps among the
generally applicable approaches.

The performance of the BnB algorithm can be under-
stood somewhat better by looking at the results of the
heuristic used to find feasible solutions in this method.
Table 4 presents these results for the first time the heuris-
tic was called, which is immedately after the LP relax-
ation is solved. We report the number instances for which
the heuristic found a feasible solution (under the # head-
ing), the average total time to run the heuristic (including
the time spent solving the initial LP relaxation), and the
average gap between the value of the heuristic solution
and the value of the LP relaxation. For comparison pur-
poses, we also show in this table the average time it takes
formulation FSD1+SSD just to solve the LP relaxation.
This table shows that the heuristic usually finds a feasi-
ble solution and that already after this solution is found,
the optimality gap is relatively small by just comparing
this solution value to the LP relaxation value (which is
equal to the value from an SSD-constrained problem). The
total heuristic time is also less than the time to solve the LP
relaxation of FSD1+SSD.

We close this section by commenting on the relative dif-
ficulty of the instances, as can be observed, e.g., by looking
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Table 3. Average optimality gaps of different FSD formulations after 10 minute time limit over five instances when starting with
equal allocation solution

(d, T) N FSD1 % FSD 1+SSD % FSD2 % BnB % FSD3 %

(3, 50) 50 0.1 0.0 0.0 0.0 0.0
100 *3.3 *0.1 *3.8 0.2 0.0
150 *3.8 *1.6 — 0.2 0.0

(3, 100) 50 0.1 0.0 0.0 0.0 0.0
100 1.1 0.0 *1.6 0.1 0.0
150 *1.9 0.3 — 0.4 0.0

(5, 50) 50 1.9 0.1 2.7 0.2 0.0
100 *4.2 *1.6 — 1.0 0.2
150 *3.7 *3.1 — *2.2 2.8

(5, 100) 50 0.8 0.0 0.2 0.0 0.0
100 *2.5 0.4 — 0.2 0.0
150 *3.5 *2.9 — 0.4 0.1

∗In at least one instance a feasible solution not found within 10 minutes when not given a starting solution. —LP relaxation did not solve within
time limit.

at the results of formulation FSD3. It appears that hav-
ing more objectives in the stochastic dominance constraint
(d = 5 compared with d = 3) makes the instances more dif-
ficult, which is intuitive because with more objectives the
problem size increases and also it may be harder to find
a solution that stochastically dominates the benchmark.
Somewhat less intuitively, the instances with fewer projects
(T = 50 compared with T = 100) also appear more diffi-
cult. However, having more projects likely makes it easier
to find a solution that stochastically dominates the bench-
mark, which may translate to making the problem easier to
solve.

5.2. IMRT application

We use a radiation treatment planning problem to further il-
lustrate the idea of optimizing with a multivariate stochastic

Table 4. Heuristic (Section 4.3) compared with LP relaxation
of FSD1+SSD for five instances. Average solution times are in
seconds. Average gap compares heuristic solution to FSD1+SSD
relaxation

Heuristic FSD1+SSD
(d, T) N # feasible Time Gap % Time

(3, 50) 50 5 0.12 0.19 0.6
100 5 0.71 0.23 7.2
150 5 3.56 0.18 32.9

(3, 100) 50 5 0.14 0.03 0.7
100 5 0.67 0.13 5.0
150 5 2.51 0.10 30.4

(5, 50) 50 5 0.25 0.69 1.6
100 5 1.90 1.13 11.7
150 3 8.67 0.93 69.7

(5, 100) 50 5 0.28 0.14 1.9
100 5 1.60 0.23 15.0
150 5 7.15 0.36 84.0

dominance constraint. (The term IMRT, the most common
form of radiation treatment, short for intensity modulated
radiation treatment, is often used interchangeably with ra-
diation treatment.) A radiation treatment plan is a selection
of beam angles, beam apertures (i.e., shape of each beam’s
cross-section), and beam intensities for the radiation beams
that, when delivered, will create a particular radiation dose
profile in the patient. A good radiation treatment plan is
one that creates a dose profile delivering a sufficient dose
of radiation to the tumor (the target) while minimizing the
dose received by healthy organs and tissues.

The standard formulation of the planning problem as-
sumes that the beam angles are already chosen, leaving the
choice of apertures and intensities as the decision variables.
Then instead of modeling the aperture shape directly, the
standard approach divides the beam opening into a grid
of “beamlets” or “pencil-beams” whose intensities we can
set independently. (A subsequent “leaf sequencing” step
then determines how to achieve the chosen set of beamlet
intensities using a small set of apertures.)

Let S be the set of “structures,” regions of the patient’s
body for which we will calculate the dose profile. We then
discretize the volume for each structure s ∈ S into a set
V(s) of volume elements or “voxels.” Let As ∈ R

|V(s)|×B be
the “dose matrix” for structure s, where B is the number of
beamlets: the dose delivered to voxel v ∈ V(s) from beamlet
b at intensity one is As(v, b). Each column of As represents
the dose profile created by having a particular beamlet on at
unit intensity. The decision variable is the vector of beamlet
intensities, x ∈ R

B
+. Thus, the dose to structure s is As x.

Due to radiation treatment planning’s multiple objec-
tives (delivering a prescribed uniform dose to the target
structure and little dose to the remaining structures), there
is some variation in how these dose profiles are turned into
optimization objectives and constraints. We define the ob-
jectives to be the mean-squared deviation from a prescrip-
tion dose,

∥∥As x − d∗
s

∥∥2
2 / |V(s)|, where d∗

s is the prescription



Multivariate stochastic programming 11

dose for structure s. A traditional approach then minimizes
the weighted sum of these objectives:

min
x≥0

∑
s

αs
∥∥As x − d∗

s

∥∥2
2 / |V(s)| , (27)

where αs is the weight given to achieving the objective for
structure s. The performance of a particular plan is then
often examined using a “dose-volume histogram” such as
Figs. 2(c) and 2(d) that show the fraction of each structure
receiving more than a certain dose (they are analogous to
cumulative distribution functions of the spatial distribution
of the radiation dose).

So far our description of radiation treatment planning is
completely deterministic. However, there are several impor-
tant sources of uncertainty for the dose distribution deliv-
ered to the patient. Organ motion (organs, especially those
in the lower abdomen, have a tendency to move around);
differences in the patient geometry between the radiation
delivery and the image taken prior to treatment planning;
patient positioning on the treatment couch; shrinkage of
the target over the course of treatment (radiation treatment
is usually spread over many days); and organ motion dur-
ing treatment (such as lung tumors while breathing) are
all important problems and major sources of uncertainty
(Li and Xing, 2000). Our goal is to incorporate such un-
certainty into the model and to find a treatment plan that
mitigates this uncertainty. We suppose that there are N sce-
narios for the possible patient geometry during treatment
which we index by j and with scenario j occurring with
probability qw( j ). The uncertainty in the patient geometry
requires that we refine the definition of the voxels v ∈ V(s)
to remove ambiguity: Do they refer to a location in space
or rather to a particular physical piece of tissue? We choose
to define the voxels by the volume discretization in the
reference scenario j = 1. In other scenarios, j �= 1, voxel
v ∈ V(s) refers to the location of the piece of tissue that is
in voxel v in the reference scenario; in every scenario voxel
v refers to the same part of the anatomy, but the voxels
only form a regular grid in the reference scenario j = 1.
We then create dose matrices Aj

s for every scenario j ∈ N .
For each scenario j , we then define a vector of all the per-
formance measures (i.e., multiple objectives) w j := {w j

s }s

with w
j
s := ‖Aj

s x − d∗
s ‖2/ |V(s)|. We combine these scenar-

ios into a random vector W of performance measures that
takes value w j in scenario j . For our optimization problem
we place the first performance measure into the objective
and require that the vector of performance measures dom-
inates some performance baseline, Y:

min
x≥0,w j

E[W1]

s.t. w j
s ≥ ∥∥Aj

s x − d∗
s

∥∥2
/ |V(s)| , ∀ j ∈ N , s ∈ S,

− W � −Y. (28)

Here W1 is the first component of W, a scalar random vari-
able, and thus a reasonable objective is to minimize E[W1].

The minus signs in the dominance constraint are because
we seek to minimize the performance measures. Note that,
although −W �1 −Y is equivalent to Y �1 W, −W �2 −Y
is not equivalent to Y �2 W. We choose the model −W �
−Y instead of Y � W because our formulations require
the decision variables to be on the left of the �. To ensure
convexity the constraint on w

j
s is relaxed, without loss of

generality, to an inequality. A reasonable way to define the
performance baseline Y is to define it as the performance of
some baseline plan x0 under the same scenarios as we con-
sider for the actual plan. Thus, for scenario j ∈ N , Y = y j

where we define y j
s := ‖Aj

s x0 − d∗
s ‖2/ |V(s)|. In our exam-

ples, we choose the baseline plan x0 to be the one that
optimizes the deterministic Formulation (27) of radiation
treatment planning assuming the expected dose distribu-
tion; that is using the dose matrices E[As ]:

x0 ∈ arg min
x≥0

∑
s

(αs/ |V(s)|) ∥∥E[As ]x − d∗
s

∥∥2
. (29)

In our example we work with a two-dimension phantom
shown in Fig. 2(a). We are concerned about three struc-
tures: the target, an organ, and regular tissue, the tissue
inside the outer blue line that is neither target nor organ.
We consider N = 10 scenarios, all of whose probabilities
are equal, where the difference among the scenarios is the
location of the target. The various locations are superim-
posed in Fig. 2(b); they are equally spaced along a sinu-
soidal motion with a 3-cm amplitude with the first scenario
closest to the organ. We subdivide the phantom into a 0.5-
cm grid of voxels using the geometry of scenario 1. We use
five beam directions equally spaced around the origin of
the phantom as shown in Fig. 2(a), and we subdivide each
beam direction into 14 beamlets with a 1-cm cross-section.
Thus, there are 70 beamlets in total. The dose prescriptions
and weights for the performance measures in the baseline
(29) are αnormal = 1, αtarget = 15, αorgan = 15, d∗

normal = 0,
d∗

target = 100, and d∗
organ = 0. The performance baseline Y

is created as described above.
On a 2 GHz MacBook with 8 GB RAM, the deter-

ministic Formulation (29) was used to determine the per-
formance baseline solved in 2 seconds using the MATLAB
optimization toolbox. Using Cplex 12.2, the SSDLP formu-
lation took 3 second: the FSD1+SSD formulation achieved
an optimality gap of 14.49% in 20 minutes, the FSD2 for-
mulation did not find a feasible solution in 20 minutes,
and the FSD3 formulation achieved an optimality gap of
13.69% in 20 minutes. We did not try the specialized BnB
algorithm for this example. The difficulty optimizing the
FSD formulations may be due to the combination of bi-
nary and quadratic constraints.

Figures 2(c) and 2(d) show the dosevolume histograms
of each structure for the solutions using an FSD con-
straint (solved to within 0.01% of optimal in 20,000 sec-
onds) and using an SSD constraint, respectively. In both
cases we compare the optimal solution from the stochastic
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(c) Using FSD
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(d) Using SSD

Fig. 2. An IMRT example using five equiangular beam directions each having 14.1-cm beamlets. The dose is calculated on a 0.5-cm
grid. Parts (c) and (d) show the distribution of the dose: the fraction of each structure’s volume receiving more than a certain dose.
The thin lines represent the different scenarios wheares the thicker lines correspond to the expected case.

dominance constraint model, whose dose–volume his-
tograms are colored, to the baseline plan, whose dose–
volume histograms are grey. The figures use thin lines to
show the dose–volume histogram for each scenario and
structure, both for the solution to the stochastic formula-
tion and for the baseline plan. To assist comparisons we
also use thicker lines to show an aggregation of the various
scenarios; the thicker lines are the dose–volume histograms
generated by using the expected dose matrices, E[As ]. These
dose–volume histograms are a standard way of displaying
radiation treatment plans but they are not ideal for visual-
izing multivariate stochastic dominance (though we are not
aware of any good way of visualizing multivariate stochas-
tic dominance). The improvement of the optimal solutions
on the baseline plan is mainly in the target where the green
lines are closer to each other and fall more steeply than
the grey lines of the baseline plan. This indicates that the
radiation dose to the target is much more even (with less de-
viation from the prescription dose) under the optimal plan.
For the organ, the optimized plans and the baseline plan
look similar, and for regular tissue it is hard to say whether
the optimized plans or the baseline plan is preferred. The

solutions using FSD and SSD are quite similar, despite the
more restrictive nature of the latter.

6. Concluding remarks

We have shown that choosing a different form of multi-
variate stochastic dominance to use as a constraint in a
stochastic program allows us to obtain computationally
tractable formulations. Specifically, we derived an LP for-
mulation for an SSD constraint that is of both computa-
tional interest (it can be solved quickly) and theoretical
interest (the constraint can be used in a convex program).
For an FSD constraint we derive several MIP formula-
tions and the specialized BnB algorithm. We also derived
a MIP formulation, FSD3, for an important special case
that numerical tests show can be solved quickly with a
commercial MIP solver. We tested these formulations in
two applications. The first application was a budget allo-
cation problem in the face of multiple objectives, in which
it is desired to find a solution that is preferred in a strong
sense to a benchmark solution. In our second application
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we used a stochastic dominance constraint to handle an
important problem in radiation treatment planning: how
to account for the uncertainty resulting from organ mo-
tion. This problem has both uncertainty and multiple ob-
jectives (getting “enough” dose to the tumor and not “too
much” to certain critical organs), and hence a formula-
tion with a multivariate stochastic dominance constraint is
helpful.

Although the LP formulation of an SSD constraint is
efficiently solved in our computational tests, the MIP for-
mulations for an FSD constraint are significantly more
difficult to solve, particularly for the formulations other
than FSD3, which apply in the general case. This is partly
due to the large size of these formulations. In future work,
it may be interesting to seek an alternative formulation
for the FSD constraint that is as strong as the ones we
have proposed but requires fewer variables. Such a formu-
lation is likely to require exponentially many constraints,
but may be efficiently solvable using a branch-and-cut
approach.

Another potential drawback to our model, common to
many stochastic dominance constraint formulations, is the
restrictiveness of the stochastic dominance relation (i.e., re-
quiring that the solution is preferred to the baseline under
a large set of utility functions) and thus the set of feasi-
ble solutions that dominate the reference random variable
may be unacceptably small (e.g., only the solution corre-
sponding to the reference random variable). This problem
is especially acute for FSD constraints and multivariate
formulations because the former require dominance for
all nondecreasing utility functions and the latter require
dominance for many different ways of trading off the dif-
ferent components. However, this problem did not seem to
occur with the IMRT application with the optimal solu-
tions significantly improving on the the baseline and the
solution of the more restrictive FSD constraint close to
the solution with the SSD constraint. One also can view
this not as an intrinsic limitation of stochastic dominance
constraints but as a challenge for selecting appropriate ref-
erence random variables that reflect a decision-maker’s risk
avoidance preferences while still being weak enough to give
a rich enough feasible set (of dominating solutions). Alter-
natively, as mentioned in the Introduction, one can follow
the approach of Lizyayev and Ruszczyński (2012) and use
a relaxed notion of stochastic dominance. In particular, ex-
tending their definition, for random vectors W and Y, we
say W ε-almost stochastically dominates Y if there exists
a nonnegative random vector Z with E[Z] ≤ ε1 and such
that W + Z stochastically dominates Y. In our finite sup-
port setting, a formulation for this relaxed notion of SSD
would be obtained by introducing nonnegative variables
z j ∈ R

d
+, j ∈ N , replacing (6b) with

g j (x) + z j ≥ w j , ∀ j ∈{1, . . . , N}
and adding the constraints

∑
j∈N z j ≤ ε1.
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Dentcheva, D. and Ruszczyński, A. (2006) Portfolio optimization with
stochastic dominance constraints. Journal of Banking & Finance, 30,
433–451.
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