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Dynamic Spectrum Management With the
Competitive Market Model

Yao Xie, Benjamin Armbruster, and Yinyu Ye

Abstract—Ye [“Competitive Communication Spectrum Economy and
Equilibrium,” 2008, working paper] and Lin et al. [“Budget Allocation
in a Competitive Communication Spectrum Economy,” EURASIP J. Adv.
Signal Process., Article ID: 963717, vol. 2009, p. 12, Sep. 2009] have shown
that dynamic spectrum management (DSM) using the market competitive
equilibrium (CE), which sets a price for transmission power on each
channel, leads to better system performance in terms of the total data
transmission rate (by reducing cross talk), than using the Nash equilibrium
(NE). But how to achieve such a CE is an open problem. We show that the
CE is the solution of a linear complementarity problem (LCP) and can
be computed efficiently. We propose a decentralized tâtonnement process
for adjusting the prices to achieve a CE. We show that under reasonable
conditions, any tâtonnement process converges to the CE. The conditions
are that users of a channel experience the same noise levels and that the
crosstalk effects between users are low-rank and weak.

Index Terms—Competitive equilibrium, dynamic spectrum management
(DSM), linear complementarity problem (LCP), radio spectrum manage-
ment.

I. INTRODUCTION

Dynamic spectrum management (DSM) is a technology to ef-
ficiently share the spectrum among the users in a communication
system. DSM can be used in the digital subscriber line (DSL) systems
to reduce crosstalk interference and improve total system throughput
[3]–[5]. DSM is also a promising candidate for multiple access in
cognitive radio [6]. In DSM, multiple users coexist in a channel, and
this causes co-channel interference. The goal of DSM is to manage
the power allocations in all the channels to maximize the sum of the
data rates of all the users, subject to power constraints [3]. Unfor-
tunately, this problem is nonconvex and cannot be solved efficiently
in polynomial time [5]. While we will use game-theoretic tools to
find decentralized solutions to DSM, it is worth noting that [5] give
a computationally tractable but centralized optimization formulation
that is asymptotically optimal as the frequency band is divided into
more and more channels.

Recently, the game-theoretic formulation of DSM has attracted in-
terest in a variety of contexts including DSL [3], [4], [7] and wire-
less [8]. In the game-theoretic formulation, each user maximizes her
data rate, the Shannon utility function, given knowledge of the other
users’ current power allocations. The Nash equilibrium (NE) of this
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competitive game has been well-studied, e.g., [3], [4], [7], [9], and [10].
Under certain conditions the NE exists and is unique. One merit of the
game theoretic formulation is that the user’s problem can be solved effi-
ciently because it is convex when holding the other users’ power alloca-
tions fixed. However, the power allocation in a NE may not be socially
optimal. Because of the noncooperative nature of the NE, users tend to
compete for “good” channels regardless of the interferences caused to
others, to the detriment of overall system efficiency, when they may all
be better off using different channels to avoid interference. This is an
instance of the well-known “tragedy of the commons” from economics
[11]. Reference [1] presents a simple example demonstrating the inef-
ficiency of the NE in DSM.

Therefore, we turn to the competitive market model for DSM de-
scribed in [1]. (Taking a different approach to this problem, [12] ana-
lyzes a generalization of the Nash equilibrium that they call a “conjec-
tural equilibrium.”) In the competitive market model, each channel has
a fictitious price per unit power, and each user purchases some power
allocation in these channels, given her budget constraint, to maximize
her data rate. The prices are determined by a central manager to keep
the total power allocated in each channel to be below a spectral mask.
A competitive equilibrium (CE) of a market model is a set of prices
and the corresponding power allocations which maximizes all users’
utility and clears the market, i.e., makes the total power allocated meet
the spectral mask. While the CE has received a lot of recent attention
in computer science, its application to resource management for com-
munication systems appears rare. The existence of a CE for DSM was
proven in [1]. Also, [2] showed that the CE achieves greater social
utility (total transmission rate) than the NE, with properly assigned
budgets to guarantee fairness among all users. It is worth noting that
the algorithm proposed in [2] to determine the budgets has low com-
munication complexity because it only requires the data rate of each
user rather than the complete channel state information. However, how
to find a CE prices efficiently is an open problem. Traditionally, the
prices are determined by distributed, auction-type algorithms called tâ-
tonnement processes [11]. But it is not known whether such processes
converge with the Shannon utility function.

This paper focuses on determining the CE of the competitive market
model for DSM and makes three contributions. We first show that the
CE is the solution of a linear complementarity problem (LCP) [13] de-
spite the apparent nonlinearity of the problem. [4] showed a similar re-
sult for the NE. Second, we show that when the interference coefficients
are user symmetric, then the problem is equivalent to finding KKT
points of a quadratic program (QP), for which a fully polynomial-time
approximation scheme (FPTAS) exists [14]. Lastly, we present decen-
tralized tâtonnement processes to solve the CE, where the manager ad-
justs the prices based on the excess demand (the difference between
the total power and the spectral mask). We prove under some low-rank
conditions, the prices converge to the equilibrium prices (hence the tâ-
tonnement processes converge to the CE).

The paper is organized as follows. The next section presents the
problem formulation. Section III presents the LCP formulation and the
FPTAS result, and Section IV is about decentralized price-adjustment
tâtonnment processes. We conclude in Section VI. Technical proofs are
in the Appendix.

The notation in this paper is conventional. We use lower case, bold
letters for vectors and capital, bold letters for matrices. ��� � � and
��� � � are elementwise inequalities while ��� � � and ��� � � indicate
that ��� is semi-positive definite and positive definite, respectively. In
addition, ��� is the identity matrix; ������ is the spectral radius of ���; ����

is the Moore–Penrose pseudoinverse of ��� ; and ���� �� ������ ��.
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Fig. 1. Competitive spectrum market model.

II. PROBLEM FORMULATION

Consider a communication system consisting of � users and �
channels. Multiple users may use the same channel (at the same time)
causing interference to each other. Suppose the power allocated by
user � to channel � is ��� � �. The total power allocated by all the
users in the ��� channel is bounded above by the spectral mask �� ,

�

���
��� � �� , for regulatory reasons. For example, in overlay

cognitive radio [6], we may want to limit the interference experienced
by the primary user due to transmissions from secondary users. (In
that case we should actually scale the power allocations so that ���
represents the power received by the primary user on channel � from
user �. Such a scaling carries through the analysis cleanly.) To achieve
an efficient allocation of spectrum we associate a price �� � � with
each channel �. For a given vector of prices, ��� � ���	 � � � 	 ����,
each user � chooses the power allocation ���� � ����	 � � � 	 ����� that
maximizes her utility function subject to her budget 
�. (Reference [2]
discusses how to choose the users’ budgets.) The spectrum manager
adjusts the prices, so that eventually the “market clears”: the demand
in each channel, �

���
��� , equals the supply, �� .

In the weak-interference regime, user �’s utility is her total data trans-
mission rate across all the channels (Shannon utility):

�������	 	����
 �

�

���

��
 � �
���

��� �
� ���


������
� (1)

Here, 	���� � �����	 � � � 	 �������������	 � � � 	 �����
� is the power allocation of

the other �� � users; ��� � � is the noise level experienced by user �
on channel �; and 
��� � � is the crosstalk coefficient for interference
to user � on channel � from user � �� �. The optimal power allocation
����� ����	 	����
 of user �, when she faces prices ��� and power allocations 	����
of the other users, is determined by the following convex optimization
problem

����� ����	 	����
 � ��
���
���

�������	 	����


s.t. �������� � 
�

���� � � (2)

which has a unique solution because it is strictly convex. Fig. 1 illus-
trates this competitive market model.

The CE [11] of this model is the vector of prices ���� and the cor-
responding user-optimal power allocations ������ so that the market
clears, �

���
��� � �� . Reference [1] proved the existence of a CE in

this model. It can be easily shown that, given ���, each users’ power al-
location problem (2) has a water-filling solution:

���� �
��
��
� ��� �

� ���


����
�
��

�

(3)

where the dual variable �� � � is determined by the budget constraint
�������� � 
�	 which is tight at the CE [1].

III. CE AS LCP

By applying the fact that � � �� is equivalent to � � �������
 �
� � � � � to (3), we obtain the following nonlinear equations that
characterize the CE:

��� �
��
��
� ��� �

� ���


������ ���	

��� ��� �
��
��

� ��� �
� ���


������ � � ���	

�������� � 
� ��	

�

��� � �� ��	

��� � � ���� (4)

Now we reformulate these equations as an LCP. Let the rev-
enue of user � on channel � be ��� �� ����� . Define the vectors
���� �� ���� 	 � � � 	 ��� �

�, ���� �� ���� 	 � � � 	 ����
�, 


 �� �
�	 � � � 	 
��

�,
and ��� �� ���	 � � � 	 ���

�. Also define the matrices ���� of crosstalk
coefficients, ����� ��� � 
��� for � �� � with ones on the diagonal,
����� ��� � �. After rearranging terms and introducing the slack vectors
���� , (4) becomes

�������� � ������ � ��� � ���� �� ��	

�

���� �


	

�
����� � ���� ��	

������ �� ���	

���� 	 ���� �� ��� (5)

We eliminate prices from the LCP by noting that the third line implies
�� � �������
��� :

���� �
�

��
�����

� ���� � ��� � ���� �� ��	

�

���� �


	

������ �� ���	

���� 	 ���� �� ��� (6)

To see its LCP structure, consider an example with two channels, � �
� and � users. Let ��� � �� ���� � ������

�
��� . Then, (6) becomes

���� � ��

� ���� ��

� � �

����
����
���

�

����
����





	

����
����

� �	 ���
����
����

�� (7)

where we look for a complementarity solution ����� ���� � ����� ���� � �. If
both���� and���� are monotone matrices, that is,���������

� and�����
����

� are positive semidefinite, then the LCP matrix on the very left of
(7) is also monotone. In that case an LCP solution can be computed in
polynomial time [13]. Applying this fact and the fact that a KKT point
of a QP can be computed by an FPTAS [14] to (6) leads to our first
result.

Theorem 1: Consider the competitive equilibrium model for spec-
trum management.

1) Let 
�, �� , ��� , and 
��� be rational. Then, there exists a CE with
rational entries, that is, the entries of the equilibrium point are
rational values.
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2) If the matrix ���� � ������
����� is monotone for all �, then a CE

can be computed in polynomial time.
3) If the matrix���� �������

����� is symmetric (in particular, if���� is
symmetric and ��� � ��� for all �) for all �, then the competitive
equilibria are the KKT points of the following QP:

�������	
��� ��������

�




�
����� ���� �




��
�����

� ����

s.t.
�

���� � ���	 �with Lagrange multiplier 


�

���� � �	 ��	 �with Lagrange multiplier ������ (8)

4) There is a FPTAS to compute a CE if the matrix���� �������
�����

is symmetric for all �.
Furthermore, assuming strict monotonicity (replacing “positive

semidefinite” with “positive definite” in the definition of mono-
tonicity) ensures that the CE is unique.

Corollary: There is a unique CE if the matrix ���� � ������
����� is

strictly monotone for all �,
For example, a symmetric weak-interference condition, that is, for

all �,
� ���


�

�� � 
 for all � and
����


�

�� � 
 for all �, will ensure
that ���� is strictly monotone for all �. In addition, if we have equal
noise: ��� � ��� , ���, then���� �������

����� will be strictly monotone
for all �. It is reasonable to assume that the���� are symmetric when the
user’s transmitter and receiver are co-located. It is further reasonable
to assume that the ��� are very small and equal because they are given
by the specification to which the transmitters and receivers are built.
Weak-interference is a standard assumption for DSL and is reasonable
in some situations for wireless communication systems.

IV. TÂTONNEMENT PROCESS FOR SPECTRUM MANAGEMENT

In this section, we present a decentralized algorithm for solving the
CE. In the centralized approach as described above, the spectrum man-
ager gathers all the parameters and then publishes the optimal power al-
locations. However, in the decentralized approach each user only sends
her current power allocations and receives the channel prices from
the manager. This reduces the communication between users and dis-
tributes the computational load to the users. The paper [15] provides
a summary of the benefits of distributed algorithms over centralized
ones.

Given the channel prices ���, the power allocations can be found by
water filling. The key question is how to adjust the prices and to ensure
that the process converges quickly to a CE. Tâtonnement processes [11]
are a broad class of price-update rules that adjusts the price based on
the excess demand: if the supply on channel �, �� , exceeds the total
demand,

�
��� , then decrease the price �� (increase it if the demand

falls short of supply). The users and the manager then alternate between
updating their power allocations and updating the channel prices, re-
spectively, until the difference between demand and supply is small.
The condition for the convergence of a tâtonnement process is known
as weak gross substitutability (WGS).

Theorem 3:
1) Suppose prices for each product � are adjusted continuously by

������

��
� �������������� (9)

where ����� is a sign preserving function (i.e., ��
������ �
��
� �� and �� is a measure of the excess of product �. Then
��� � � if weak gross substitutability holds, that is, ��������� � �
for all � �� �.

2) Suppose prices for each product � are adjusted discretely by

����� � ��� � ���������
��� (10)

where ����� is a sign preserving function (i.e., ��
������ �
��
� �� and �� is a measure of the excess of product �. Then
���� � � if weak gross substitutability holds, that is, ��������� � �
for all � �� �.
Proof: Part 1 is Theorem 4.1 of [16] (also found in [11]) while

part 2 is proved in [17].
With some conditions, we can prove WGS for our competitive

market model. For algebraic simplicity, we use excess revenue instead
of excess demand (this is without loss of generality since for each �,
the factor �� could easily be incorporated into �����).

Theorem 4: For each channel �, define ������� �� �� �
���� � �� .

Assume the following conditions:
1) symmetric, weak-interference condition:

� ���

�

�� � 
 and

� ���

�

�� � 
 ��;
2) low-rank condition: the matrices of crosstalk coefficients can be

written as ���� � ���� �


����
�
� �� where ���� diagonal,���� 	 


� 	 ���� �

�, and 


� 	 ���� in the range of ���� ; and
3) equal noise condition: ��� � �� ���.

Then our spectrum model satisfies WGS, i.e., ��������� � � for all � ��
�, so that both continuous and discrete tâtonnement price-adjustment
processes converge.

The low-rank condition on the interference matrix means that the
interference of user � on user � can be decomposed into a contribu-
tion, �


� �� , due to user �’s transmitter and a contribution, ����� ��, due to
user �’s receiver. The interference coefficient 
�

�� is the product of these
contributions. This condition says that the contribution from user �’s
transmitter to the interference coefficients with the other users does not
depend on the identity of the user receiving the interference; the con-
tribution is �


� �� in every case. Similarly, the contribution from user �’s
receiver to the interference coefficients is ����� ��, irrespective of the user
generating the interference. While few systems satisfy this assumption
exactly, it is a good approximation for many systems with relatively
symmetric setups. We remark that [1] and [2] also use this condition
and the assumption that 
�

�� � 
�
� � 
 for all ��� to show that the equi-

librium set is convex. However, the primary reason for this assumption
is to make the proof of Theorem 4 tractable. For two channels, � � �
weaker conditions suffice.

Theorem 5: If � � � and the weak-interference condition holds for
����� and ����� , then WGS holds and tâtonnement processes converge.

V. NUMERICAL EXAMPLES

We present three examples with � � 10 users and fewer channels
than users �� � ��, an equal number of channels and users �� � 
��,
and more channels than users �� � 
�� channels, respectively. The
crosstalk coefficients are independent random samples from the uni-
form distribution on ��	 
����
��, ensuring that the weak interference
condition is satisfied. The noise levels satisfy the equal noise condition,
and the �� are independent random samples from the uniform distribu-
tion on ��	 
�. For all � and �, �� � 
 and �� � 
. Fig. 2 shows how
channel prices with a decentralized tâtonnment process converge to the
CE prices calculated with the LCP in (6). After 100 iterations of the tâ-
tonnement process, the relative difference between each user’s utility
and their utility at the CE is less than 
���. For these examples, we
compare a modified CE to the NE (where each user’s total transmission
power is limited to 1). To not favor the CE, we scale each users’ power
allocations in the CE to match the NE’s limit on the total transmission
power per user. Thus, the modified CE obeys the power constraints im-
posed on the NE, and its performance is no better than that of the true
CE. We find that the average user’s utility at this modified CE is higher
than at the NE by 5%, 6%, and 2%, respectively. (We calculate the NE
with the LCP in [4].) Reference [2] has more comparisons of the CE
and the NE.
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Fig. 2. Convergence under the tâtonnement process of the channel prices to the CE, ���� � ��� �, for three examples.

VI. CONCLUSION

We considered a competitive market model for dynamic spectrum
management of a communication system. We showed that the problem
of finding the competitive equilibrium can be formulated as an LCP
and solved efficiently. Besides the centralized LCP solution, we also
proposed decentralized tâtonnement processes for adjusting prices. We
proved that these processes convergence to the CE under certain con-
ditions. In our model, each user’s budget constraint implicitly limits
their total transmission power. We plan to extend this model by incor-
porating explicit limits on the transmission power of each user and by
relaxing the weak-interference assumption and the low-rank assump-
tions on the matrices ���� of crosstalk coefficients.

APPENDIX

Proof of Theorem 4: Let ������������ � � � � ���
�

������� be the solution to
(5). We rewrite ������� � �

������ ����� � ���� . For � �� �, we will show
that both the left and right hand limits are 	�������� � �

�	����
�

� ����� � �.
Let us look at the left hand limit (the right hand limit will be similar).
There is a small open interval �
 � �� 
� in which the active set of the
LCP is constant. Let the set �� be the active set of channel �, �� ��
�
 � ��� � �� and ���� the ��� matrix so that ����� ��� �� 	 if 
 � � � ��
and 0 otherwise. Note that �������� � � and ��� � � for 
 �� �� , thus
�������� � ���� . And hence, the first equation in (5) becomes

���������������� � ������� � ���������� � (11)

Defining 
���� �� ������������ , it follows that 
����
�
���� � 
����

� and that one
solution is

���� � 
����
�
��� � �� 
����

�
���� � (12)

Then the budget constraint [the last equation in (5)] gives us

�


���
�
���� � �� 
���

�
����� � ���� (13)

Thus, one solution for ��� is

��� �
�


���
�
�

�

��� �
�

�� 
���
�
����� � (14)

Thus, for � �� �,

	��
	��

�
	

	��
�
����� � �

� 
���
�
�

	���

	��
� (15)

	��
	��

��
� 
���

�
�

�


���
�
�

�

���
�
� ����� (16)

The equal noise condition and Lemma 8 then prove the claim.

Proof of Theorem 5: Following the proof of Theorem 4, we need
to show that 	���	�� given by (16) is nonnegative:

	��
	��

��
� 
���

�
�


���
�
�
� 
���

�
�

�

���
�
�
����

��
� 
���� � 
����

�
����� (17)

Since ����
���� � 
�����
� is a channel matrix obeying weak interference

we can apply Lemma 7 to show that �� 
���� � 
����

�
is a nonnegative

vector. The fact that ���� � � completes the proof.
The following lemmas are needed in the above proofs.

Lemma 6: For 
 � 	� � � � ��, let ���� � ���� � �������
�

� where ����

diagonal, ���� � ���� � ���� � �, and ���� � ���� in the range of ���� . If for each 


there exists � such that ����� ��� � �, then, � ���
�
�

��

exists and is
nonnegative.

Proof: Applying the Sherman–Morrison formula to the range of

���� we obtain ���
�
� � ���

�
� � ���� , where ���� �� ����

�
��������

�

� ���
�
� ���	 �

����� ���
�
������. Since ���� � �, ����� � �. Therefore, ���� � ���� � � implies

���� � �. Thus, � ���
�
� can be written as

�

���
�
� � ��� ���� (18)

where ��� �� � ���
�
� and ��� �� � ���� . Since ��� 	 �, ����� exists and

we may define ��� �� �����������������. Note that ��� � �, ��� � �, and
��� diagonal. Thus, ������� � � and ��� � �. Note that for any ��� �� �,

���������� � ����������������������� 

�

�����������������
������� (19)

�
�

�������������
�
��������

�

� ���
�
����

�������

	 � ����� ���
�
�����

(20)



�

������
�
� �

����������
�

� ����
�
� �

���� ����
�
� �

�������������
�

�

	 � ����� ���
�
�����

(21)

�
�

������ ���
�
����������

�����������
�
����

��������

	 � ����� ���
�
�����

(22)


�
�

��������������
�
����

������� (23)
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where � � ��������
�

� ���
�
��������� � ����� ���

�
������. Since ���� � ���� ��� � 	,

� � 	, and since ��� and ��� are in the range of ���� , � � �. Therefore, for
any ��� �� �,

����			��� �
�

��������������
�
����
�������

������������������������� � �������
 (24)

Hence, ��			� � �, and thus, ���� �			��� � �

���			
� � 	. Therefore,

� � 



�
� �
�� � ���� ������� � ����������� �			���������� � 	.

Lemma 7: If 


 is a channel matrix satisfying the weak-interfer-
ence assumption, then 


��� � 	.

Proof: Since 


 is a channel matrix we can write 


 � ��� ���� for
some ��� � 	. Hence,




��� ����� ��������

����� ����������� ����������� ������

� ��� ����� �� ���� ������
 (25)

The weak interference assumption implies that ������ � �. Hence,
��� ����� �� exists and equals �

������
�� � 	. In addition, ���� �

����� � 	, due to the weak interference assumption. Thus, 
��� � 	.

Lemma 8: Assume conditions 1)–3) of Theorem 4 hold. For each
�, consider a set�� and construct 



� so that � 



� ��� 
� �


� ��� if �� � � ��

and 0 otherwise. Then,

�
� 





�
�

�






�
�

�





�
�
� � 	 ��� �
 (26)

Proof: Applying Lemma 7 to the range of 



� implies that 



�� � �
	. Similarly for 



� . Applying Lemma 6 to the union of the ranges of����

shows that �





�
�

�
� 	. This proves the claim because the product

of nonnegative vectors and a nonnegative matrix is nonnegative.
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