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1 Introduction

We consider a situation where a certain “experiment” is planned, and traders
are betting on its outcome. Typical examples could be a horse race and an
election. Denote by M = {1, . . . ,m} the set of outcomes of the experiment and
by N = {1, . . . , n} the set of traders. Traders are interested in buying or selling
betting contracts. For j ∈ M , a single contract Cj entitle the purchaser receive
from the seller of the contract one dollar in the event where the outcome is j.1

Each trader i ∈ N has an initial amount of money mi > 0 and a subjective
probability distribution pi = (pi1, . . . , pim) over M , so that pij ≥ 0 for every
j and

∑m
j=1 pij = 1. The number pij is the subjective probability of trader

i that the outcome will be j. We assume that the utility of trader i, before
the experiment has taken place, is equal to his subjective expectation of the
amount of money he will have after the experiment has been performed and the
obligations are have been settled. Thus, trader i is willing to pay at most pij

for contract Cj and sell this contract for at least pij . Denote P = (pij) and
m(= (m1, . . . ,mn).

Each trader can be either a seller or a buyer of each contract. The mar-
ket determines prices for contracts, as an equilibrium according the definition
stated below, as a function of the subjective probability distribution pi and the
amounts mi. If the market determines a price πj for contract Cj , then each
trader i, such that pij > πj , is willing in principle to buy the contract Cj be-
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1We assume that contracts can be traded in fractions, so that a fraction α > 0 of a contract

Cj at the price πj costs α πj and the seller pays α if the outcome is j.
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cause it yields an expected positive net profit. Similarly, each trader i, such that
pij < πj , is willing in principle to sell the contract Cj . However, traders have
limited budgets, and therefore wish to optimize their trades, so the numbers of
particular contracts they wish to buy and sell depend on the budget. Also, a
seller must put on deposit the worst-case amount he may have to pay on the
contracts he sells. The tuple 〈N,M, P , m〉 is called a prediction market.

In a paper published in 1959, Eisenberg and Gale [2] introduced a model
for betting on the outcome of an experiment, where there are only buyers. In
their model, the money that collected from buyers is returned to the winners,
possibly after deduction of a certain percentage.

Manski [3] considered a model where the distribution of beliefs is contin-
uous and the budgets are stochastically independent of beliefs. Under these
assumptions, Manski characterized the unique equilibrium price in the case of
two possible outcomes.

In this paper we discuss the following concept of a prediction-market equi-
librium:

Definition 1 (Equilibrium). Given a prediction market 〈N,M, P , m〉, a prediction-
market equilibrium is a triple

〈π = (π1, . . . , πm), B = (bij),S = (sij)〉

that satisfies the conditions stated below, where πj is the price of contract Cj,
bij is the number of contracts Cj bought by trader i, and sij is the number of
contracts Cj sold by trader i; the following conditions must be satisfied:

(i) For every trader i ∈ N , the vector

ui ≡ (bi1, . . . , bim, si1, . . . , sim)

is an optimal solution of the following optimization problem:

Maximize ui

∑

j∈M

(pij − πj) bij +
∑

j∈M

(πij − pij) sij (1)

subject to
∑

j

πj bij −
∑

j

πj sij + max
j∈M

{sij} ≤ mi (i ∈ N) (2)

bij , sij ≥ 0 (j ∈ M) , (3)

(ii) for every outcome j ∈ M ,
∑

i∈N

bij =
∑

i∈N

sij . (4)

Note that in (2),
∑

j bij πj is the total amount of money trader i has to pay
for all the contracts he buys,

∑
j sij πj is the total amount that trader i receives
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for all the contracts he sells, and maxj{sij} is the amount that trader i has to
set aside in order to guarantee that he will always be able pay his obligations.

An m-tuple π = (π1, . . . , πm) is called a vector of equilibrium prices if there
exist B and S such that 〈π, B,S)〉 is an equilibrium.

2 Individual optimization

In equilibrium, each trader achieves the maximum possible expected net profit
under the equilibrium prices. In this section we characterize these optimal
trades.

2.1 Individual buyer optimization

Proposition 1. Given nonnegative prices (π1, . . . , πm), for every trader i ∈ N :

(i) if there is a j ∈ M such that pij > πj = 0, then the expected net profit
that trader i can achieve by only buying contracts is unbounded, and

(ii) if pij = 0 for every j such that πj = 0, then the maximum expected net
profit that trader i can achieve by only buying contracts is equal to

mi ·max
{

0, max
{

pij − πj

πj
: πj > 0

}}
.

Proof. If pij > πj , then by buying bij contracts Cj , trader i’s expected net profit
is equal to ∑

j∈M

(pij − πj) bij .

If trader i only buys contracts, then he considers the following optimization
problem:

P b
i

Maximize(bij)

∑

j∈M

(pij − πj) bij

subject to
∑

j∈M

πj bij ≤ mi

bij ≥ 0 (j ∈ M)

If pij > πj = 0, then the trader can buy as many Cj contracts as he wishes, and
hence the expected net profit is unbounded. Otherwise, it is optimal for him
to buy mi/πj units of any contract Cj that maximizes the ratio (pij − πj)/πj

(or , equivalently, the ratio pij/πj) provided that pij > πj . Contracts with
pij = πj = 0 yield zero net profit.
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2.2 Individual seller optimization

Next, consider the optimization problem of a trader who wishes only to sell
contracts.

Proposition 2. Given nonnegative prices (π1, . . . , πm), for every trader i ∈ N :

(i) if there exists a j ∈ M such that πj > pij, then for every outcome j ∈ M
such that πj > pij, in every optimal solution of problem P s

i ,

sij = max
k
{sik} > 0 ;

(ii) if
∑

j:πj>pij
πj < 1, then the optimal common value of the sijs is

si =
mi

1−∑
j:πj>pij

πj
,

and the expected net profit is

mi

∑

j∈M

max{0, πj − pij}
1−∑

j:πj>pij
πj

and

(iii) if
∑

j:πj>pij
πj ≥ 1, then the profit to the seller is unbounded as long as

there is demand.

Proof. If pij < πj , then by selling sij contracts Cj , trader i’s expected net profit
is equal to ∑

j∈M

(πj − pij) sij .

However, trader i must deposit the amount of maxj{sij} to guarantee that for
any j ∈ M , he would be able to pay sij dollars if the outcome were j. Thus,
if trader i only sells contracts, then he considers the following optimization
problem:

P s
i

Maximize(sij)

∑

j∈M

(πj − pij) sij

subject to sij −
∑

k∈M

πk sik ≤ mi (j ∈ M)

sij ≥ 0 (j ∈ M) .

If there exists a j such that πj > pij then obviously maxk{sik} > 0. Thus, if
sij < maxk{sik}, then by increasing sij below maxk{sik} > 0, the objective
value increases while the constraints continue to hold. There exists an optimal
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solution such that sij = 0 for every j such that πj ≤ pij . In such a solution, the
maximum possible value s of maxk{sik} satisfies

s− s ·
∑

j:πj>pij

πj ≤ mi .

2.3 Individual optimization in general

We now discuss the full optimization problem of trader i when he considers both
buying and selling. The decision variables are bi1, . . . , bim, si1, . . . , sim. Thus,
the problem is the following:

P bs
i

Maximize(bij),(sij)

∑

j∈M

(pij − πj) bij +
∑

j∈M

(πj − pij) sij

subject to
∑

j∈M

πj bij + sij −
∑

k∈M

πk sik ≤ mi (j ∈ M)

bij , sij ≥ 0 (j ∈ M) .

Proposition 3. Given nonnegative prices (π1, . . . , πm), for every trader i ∈ N :

(i) If pij = πj for every j ∈ M , then trader i is totally indifferent and has
zero expected net profit.

(ii) If either there exists a j ∈ M such that pij > πj = 0, or
∑

j:πj>pij
πj ≥ 1,

then the expected net profit of trader i is unbounded.

(iii) If pij = 0 for every j ∈ M such that πj = 0, and if
∑

j:πj>pij
πj < 1, then

the optimal expected net profit of trader i is equal to

mi ·max
{

max
{

pij − πj

πj
: j ∈ M

}
,

∑
j:πj>pij

(πj − pij)

1−∑
j:πj>pij

πj

}
. (5)

Proof. Suppose that at an optimal solution trader i spends β ≥ 0 on buying
contracts and γ ≥ 0 on selling, so that β + γ ≤ mi. It follows from Proposition
1 that the expected net profit from buying is equal to:

β ·max
{

0, max
{

pij − πj

πj
: j ∈ M

}}
.

On the other hand, it follows from Proposition 2 that if
∑

j:πj>pij
πj < 1, then

the expected net profit is

γ ·
∑

j∈M

max{0, πj − pij}
1−∑

j:πj>pij
πj

,
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and otherwise, the problem is unbounded2. It follows that if pij = πj for every
j ∈ M , then trader i is totally indifferent and has zero expected net profit;
otherwise, the optimal expected net profit is the one given in (5).

Corollary 1. For every trader i ∈ N , if (π1, . . . , πm) are nonnegative prices
such that πj 6= pij for at least one j ∈ M , then at optimal solution of P bs

i , trader
i either uses his entire budget to buy, or uses his entire budge to sell, except in
the special case where

max
{

pij − πj

πj
: j ∈ M

}
=

∑
j:πj>pij

(πj − pij)

1−∑
j:πj>pij

πj
,

i.e., the expected net profit per dollar from buying is equal to the expected net
profit per dollar from selling.

Proposition 4. If (π1, . . . , πm) are nonnegative prices such that
∑

j∈M πj = 1,
then for every trader i ∈ N , there is an optimal solution of Problem P bs

i where
i does not sell at all.

Proof. Let i ∈ N be fixed. Suppose that instead of selling one Cj-contract for
each j such that πj > pij , trader i buys one Cj-contract for each j such that
πj ≤ pij . The expected net profit from buying these contracts is equal to

∑

j:πj≤pij

(pij − πj) = 1−
∑

j:πj>pij

pij − 1 +
∑

j:πj>pij

πj =
∑

j:πj>pij

(pij − πj) ,

which is the same as the net profit from selling those other contracts. Also, the
cost of buying these contracts is equal to

∑

j:πj≤pij

πj = 1−
∑

j:πj>pij

πj ,

which is the same as the cost of selling those other contracts.

Proposition 5. In Problem P bs
i , there is always an optimal solution such that

for every j ∈ M , ∑

k∈M

πk(bik − sik) + sij = mi .

Proof. Suppose that at some optimal solution of P bs
i there is a j ∈ M such that

∑

k∈M

πk(bik − sik) + sij < mi .

Denote
δj = mi −

∑

k∈M

πk(bik − sik)− sij > 0 .

2However, as we show later, at equilibrium prices the problem is bounded.
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Increasing each of bij and sij by δj does not change the value of the objective
function, nor does it violate any of the constraints, and in the new solution the
equality to mi holds.

3 Equilibrium prices sum to 1

Proposition 6. If (π1, . . . , πn) are equilibrium prices, then
∑

j∈M πj = 1.

Proof. Let i ∈ N be any trader and let j ∈ M be any outcome. If i sells one
Cj-contract, then from i’s point of view, with probability pij , his final wealth
will be mi +πj−1, and with probability 1−pij , his final wealth will be mi +πj .
On the other hand, if i buys one Ck-contract for each k 6= j, then from i’s point
of view, with probability pij , his final wealth will be mi −

∑
k 6=j πk, and with

probability 1− pij his final wealth will be mi −
∑

k 6=j πk + 1.

If
∑

k∈M πk < 1, then both

mi + πj − 1 < mi −
∑

k 6=j

πk

and
mi + πj < mi −

∑

k 6=j

πk + 1 .

It follows, that i would not sell Cj . This conclusion holds for every i ∈ N and
j ∈ M and, therefore, in this case there would be no selling and no buying.
However, this can be an equilibrium only if pij = πj for every i ∈ N and j ∈ M ,
which implies

∑
j πj = 1.

If
∑

j∈M πj > 1, if i sells x Cj-contracts for each Cj , then i receives x ·∑
j∈M πj , is more than the required deposit of x, so every value of x is feasible.

The final wealth of i is equal to mi + x ·∑j∈M πj − x, which can be arbitrarily
large, and hence not in equilibrium.

Note that the proof of Proposition 6 holds without the assumption of a linear
utility function.

4 An equivalent formulation with no sellers

In this section we discuss a different formulation of the betting problem, which
was introduced by Eisenberg and Gale [2]. We show the equivalence of the
prediction-market model we defined above to the Eisenberg-Gale model.

Definition 2. An equilibrium 〈π,B,S〉 is called regular if for every i ∈ N ,
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(i) there exists an si such that for every j ∈ M , if πj ≥ pij, then sij = si,
and

(ii) for every j ∈ M , if πj < pij, then sij = 0.

Proposition 7. If π = (π1, . . . , πm) is a vector of equilibrium prices, then there
exist transactions B and S such that 〈π,B, S〉 is a regular equilibrium.

Proof. Let B and S be transactions such that 〈π, B, S〉 is an equilibrium. For
every i ∈ N and j ∈ M , if πj ≥ pij , then as described in the proof of Proposition
5, define new values b′ij and s′ij by increasing each of sij and bij by an equal
amount δij , until the new amounts b′ij = bij + δij and s′ij + δij satisfy

∑

k∈M

πk(b′ijk − s′ik) + s′ij = mi (i ∈ N, j ∈ M) .

These modified transactions are also individually optimal, obviously, s′ij is inde-
pendent of j, as long as πj ≥ pij . Next, for every i ∈ N and j ∈ M , if πj < pij

and sij > 0, then necessarily bij ≥ sij . In this case we define b′ij = bij − sij and
s′ij = sij − sij = 0. These modified transactions too are individually optimal.
Obviously, ∑

j∈M

b′ij =
∑

j∈M

s′ij

so
〈
π,B′,S′

〉
is an equilibrium that satisfies conditions (i) and (ii) of this

proposition.

In view of Propositions 7, 4 and 6, the characterization of equilibrium prices
can be simplified as described in the following proposition:

Proposition 8. If π = (π1, . . . , πm) is a vector of equilibrium prices, then there
exists a matrix B̄ = (b̄ij) (i ∈ N , j ∈ M) such that

(i) for every i ∈ N , given π, the maximum expected net profit that trader i
can achieve by buying and selling is equal to

∑
j∈M (pij − πj)b̄ij,

(ii) for every i ∈ N , ∑

j∈M

πj b̄ij = mi ,

and

(iii) for every j ∈ M , ∑

i∈N

b̄ij =
∑

i∈N

mi .
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Proof. Let B and S be transactions such that 〈π,B, S〉 is a regular equilibrium
(see Proposition 7). We define a replacement of all the sales si1, . . . , sim by
purchases. For every i ∈ N , we replace the sales of sij = si > 0 Cj-contracts
(where πj ≥ pij) by purchases of si Cj-contracts for each j such that πj < pij .
We denote by b̄ij the resulting total purchase amounts (i.e, the previous amounts
bij plus the ones that replaced the sales) and denote B̄ = (b̄ij). Thus,

b̄ij =

{
bij + si if πj < pij

bij if πj ≥ pij .

From the point of view of trader i, the probability distribution over his final
wealth is unchanged as can be seen as follows. Denote by A the set of all j
such that πj ≥ pij . If trader i sells si units of each contract Cj such that
j ∈ A, then with probability

∑
j∈A pij , the net profit from these sales is equal

to si

∑
j∈A πj − si, and with probability

∑
j 6∈A pij , the net profit from these

sales is equal to si

∑
j∈A πj . If i buys si units of each contract Cj such that

j 6∈ A , then with probability
∑

j∈A pij the net profit from these sales is equal
to −si

∑
j 6∈A πj , and with probability

∑
j 6∈A pij the net profit from these sales

is equal to si− si

∑
j 6∈A πj . Since

∑
j∈M πj = 1, the net profits under these two

scenarios are equal. In particular, the expected net profit from the sales that
are replaced is equal to the expected net profit from the purchases that replace
them: ∑

j:πj≥pij

(πj − pij) si =
∑

j:πj<pij

(pij − πj) si

and the total costs for each of these sets of contracts are also equal:

si − si

∑

j:πj≥pij

πj = si

∑

j:πj<pij

πj .

Therefore, given p, every trader i ∈ N is indifferent between the purchases
(b̄i1, . . . , b̄im) and the transactions (bi1, . . . , bim; si1, . . . , sim). The balance con-
straints ∑

i∈N

bij =
∑

i∈N

sij (j ∈ M)

imply relations over the b̄ijs as follows. For every j ∈ M ,
∑

i∈N

b̄ij =
∑

i∈N

bij +
∑

i:πj<pij

si

=
∑

i:sij>0

sij +
∑

i:πj<pij

si

=
∑

i:sij>0

si +
∑

i:sij=0

si

=
∑

i∈N

si .
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On the other hand, since 〈π,B, S〉 is a regular equilibrium, for every i ∈ N and
j ∈ M , if πj ≥ pij , then sij = si. It follows that for every i ∈ N ,

∑

k∈M

πk(bik − sik) + si = mi ,

and hence ∑

i∈N

mi =
∑

i∈N

∑

k∈M

πk(bik − sik) +
∑

i∈N

si

=
∑

k∈M

πk

∑

i∈N

(bik − sik) +
∑

i∈N

si

=
∑

i∈N

si .

Thus, for every j ∈ M ,
∑

i∈N

b̄ij =
∑

i∈N

si =
∑

i∈N

mi .

The above-mentioned relations give rise to the following definition:

Definition 3 (Buyers equilibrium). A buyers equilibrium is a pair
〈
π, B̄

〉
that satisfies the conditions stated below, where πj is the price of contract Cj,
b̄ij is the number of contracts Cj bought by trader i; the following conditions
must be satisfied:

(i) For every trader i ∈ N , the vector (b̄i1, . . . , b̄im) is an optimal solution of
the following optimization problem:

Maximize b̄i1,...,b̄im

∑

j

(pij − πj) b̄ij (6)

subject to
∑

j∈M

πj b̄ij ≤ mi (i ∈ N) (7)

b̄ij ≥ 0 (j ∈ M) , (8)

(ii) For every outcome j ∈ M ,
∑

i∈N

b̄ij =
∑

i∈N

mi . (9)

The following proposition was first proven by Eisenberg and Gale [2] (see
below).

Proposition 9. In a buyers equilibrium,
〈
π, B̄

〉
,
∑

j∈M πj = 1.
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Proof. It follows from the definition that
∑

i∈N

mi =
∑

i∈N

∑

j∈M

πj b̄ij =
∑

j∈M

πj

∑

i∈N

b̄ij =
∑

j∈M

πj ·
∑

i∈N

mi .

This implies the claim.

Proposition 10. If 〈π, B̄〉 is a buyers equilibrium, then π is also a vector of
equilibrium prices in the prediction market with buyers and sellers.

Proof. Given a buyers equilibrium, define

b′ij =

{
b̄ij if j < m

0 if j = m

and

s′ij =

{
b̄im if j < m

0 if j = m .

We now show that the triple 〈π, B′ = (b′ij), S
′ = (s′ij)〉 is an equilibrium.

First, the expected net profits in the buyers-only formulation and in the regular
formulation, respectively, are equal:

∑

j∈M

(pij − πj)(b′ij − s′ij) =
∑

j∈M

(pij − πj)b̄ij .

Second, the amounts of money spent in both optimization problems are equal
as well; if j < m, then

m∑

k=1

πk(b′ik − s′ik) + s′ij =
m−1∑

k=1

πk(b̄ik − b̄im) + b̄im

=
m−1∑

k=1

πk b̄ik +
(

1−
m−1∑

k=1

πk

)
b̄im

=
m∑

k=1

πk b̄ik = mi

and
m∑

k=1

πk(b′ik − s′ik) + s′im =
m−1∑

k=1

πk(b̄ik − b̄im)

=
m−1∑

k=1

πk b̄ik − b̄im

m−1∑

k=1

πk

≤
m∑

k=1

πk b̄ik = mi .
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Furthermore, B′ and S′ satisfy the balance requirements; for j = m,
∑

i∈N

b′im =
∑

i∈N

s′im = 0 ,

and for every j < m,
∑

i∈N

(b′ij − s′ij) =
∑

i∈N

(b̄ij − b̄im)

=
∑

i∈N

b̄ij −
∑

i∈N

b̄im

= m
∑

i∈N

∑

k∈M

πk b̄ik −m
∑

i∈N

∑

k∈M

πk b̄ik

= 0 .

Thus, we have proven:

Theorem 1. A vector π is a vector of equilibrium prices in a prediction market
with buyers and sellers if and only if it is a vector of equilibrium prices in the
buyers-only model.

4.1 The Eisenberg-Gale concave maximization

The buyers equilibrium problem was essentially formulated by Eisenberg and
Gale [2], who also analyzed it via the following optimization problem:

Maximize ¯B

∑

i∈N

mi log
( ∑

j

pij b̄ij

)

subject to
∑

i∈N

b̄ij ≤
∑

i∈N

mi (j ∈ M)

b̄ij ≥ 0 (i ∈ N, j ∈ M) .

(10)

It follows that at an optimal solution B̄, there exist multipliers π1, . . . , πm such
that

πj ≥ mi pij∑
j pij b̄ij

(i ∈ N, j ∈ M)

b̄ij > 0 ⇒ πj =
mi pij∑
j pij b̄ij

(i ∈ N, j ∈ M)

∑

i∈N

b̄ij ≤
∑

i∈N

mi (j ∈ M)

πj > 0 ⇒
∑

i∈N

b̄ij =
∑

i∈N

mi (j ∈ M)
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It follows that for every j ∈ M ,
∑

j pij b̄ij

mi
≥ pij

πj
,

and for every i ∈ N and j ∈ M , if b̄ij > 0, then
∑

j pij b̄ij

mi
=

pij

πj
.

This implies that for every i ∈ N , (b̄i1, . . . , b̄im) is an optimal solution in buyer
i’s problem. Also, for every i ∈ N ,

∑
j pij b̄ij

mi

∑

j

πj b̄ij =
∑

j∈M

pij b̄ij ,

hence, ∑

j∈M

πj b̄ij = mi .

Furthermore, ∑

j∈M

πj

∑

i∈N

b̄ij =
∑

j∈N

πj

∑

i∈N

mi

and ∑

i∈N

∑

j∈M

πj b̄ij =
∑

i∈N

mi ,

so ∑

j∈N

πj = 1 .

The consequences of the Gale-Eisenberg characterization of buyers equilib-
rium with regard to the prediction-market equilibrium with buyers and sellers
are the following:

• There exists a unique vector of equilibrium prices

• The equilibrium prices as well as equilibrium transaction can be found in
polynomial time [1].

5 A market with a continuum of traders

In this section consider a market with a non-atomic continuum of traders. We
work in the buyers-only setting. Each trader is represented by a probability
distribution p = (p1, . . . , pm) over the set M = {1, . . . ,m} of outcomes. Let
m be fixed. Thus,

∑m
j=1 pj = 1 and pj ≥ 0, j = 1, . . . , m. The set of all

13



such vectors p is a simplex denoted by ∆. We consider a non-atomic measure
µ : ∆ → <+, so that µ(p) is the density of money (i.e., budget) per unit volume
at the point p. Without loss of generality, assume

∫

∆
µ(p) dp = 1 . (11)

An equilibrium is a pair 〈π,β〉, where π = (π1, . . . , πm) is a vector of prices
and β = (β1, . . . , βm) is a vector of measures βj : ∆ → <+, j = 1, . . . , m,
where βj(p) represents the density of the number of Cj-contracts bought per
unit volume at p ; two conditions must be satisfied:

• The condition of individual optimality that appears in the finite model is
generalized to the continuous model as follows. Consider a given vector
of prices π = (π1, . . . , πm) and a vector of beliefs p = (p1, . . . , pm). The
optimization problem of traders in the neighborhood of p is to choose
the values of β1(p), . . . , βm(p) so as to solve the following minimization
problem:

Maximize
∑

j∈M

(pj − πj)βj(p) (12)

subject to
∑

j∈M

πj βj(p) ≤ µ(p) (13)

βj(p) ≥ 0 (j ∈ M) .

Here, the cost per unit volume is constrained by the budget per unit
volume, and the objective is to maximize the net profit per unit volume.

• The balance constraint is the following:
∫

∆
βj(p) dp = 1 (j ∈ M) . (14)

5.1

The individual-optimality condition implies that in equilibrium 〈π, β〉,
pj

πj
< max

k∈M

pk

πk
⇒ βj(p) = 0 . (15)

For every 0 < π ∈ ∆ and j ∈ M , denote

∆j(π) ≡
{

p ∈ ∆ : (∀k ∈ M)
(

k 6= j ⇒ pj

πj
>

pk

πk

)}
. (16)

The following theorem states that in equilibrium, for every j ∈ M , the fraction
of the total budget that comes from the set ∆j(π) is equal to πj .

14



Theorem 2. If µ is non-atomic and 〈π, β〉 is an equilibrium, then for every
for every j ∈ M , ∫

∆j(π)

µ(p) dp = πj . (17)

Proof. Denote
∆0(π) =

⋃

j∈M

∆j(π) .

Since the Lesbegue-measure of the set ∆ \∆0(π) is zero, we have
∫

∆
βj(p) dp =

∫

∆0(π)

βj(p) dp .

Therefore, by (14)–(16), for every j ∈ M ,

1 =
∫

∆
βj(p) dp =

∑

k∈M

∫

∆k(π)

βj(p) dp =
∫

∆j(π)

βj(p) dp . (18)

On the other hand, by (13), in equilibrium,
∑

k∈M

πkβk(p) = µ(p) . (19)

It follows from (19) and (18) that
∫

∆j(π)

µ(p) dp =
∑

k∈M

πk

∫

∆j(π)

βk(p) dp = πj

∫

∆j(π)

βj(p) dp = πj .

5.2 The Eisenberg-Gale program

The generalization of the Eisenberg-Gale optimization problem to the continu-
ous model is the following:

Maximize β

∫

∆
log

( ∑

j∈M

pj βj(p)
)

µ(p) dp

subject to
∫

∆
βj(p) dp = 1 (j ∈ M)

βj(p) ≥ 0 (j ∈ M) .

It follows from this formulation that there exists a unique equilibrium price
vectors.
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5.3 A geometric illustration

We show that the subsets ∆j(π) have an intuitive geometric structure. For
π > 0, denote

∆j(π) ≡
{

p ∈ ∆ : (∀k ∈ M)
(

pj

πj
≥ pk

πk

)}
. (20)

The subdivision
∆ = ∆1(π) ∪ · · · ∪∆1(π)

is generated by the hyperplanes

Hj` ≡
{

p ∈ ∆ :
pj

πj
=

pj

π`

}
.

Obviously, for every j and ` in M ,

∆j(π) ∩∆`(π) =
{

p ∈ ∆ : (∀k ∈ M)
(

pj

πj
=

p`

π`
≥ pk

πk

)}
. (21)

Also, ⋂

j∈M

∆j(π) =
{

p ∈ ∆ :
p1

π1
=

p2

π2
= · · · = pm

πm

}
= {π} .

Furthermore, for every j ∈ M , the unit vector ej (where ej
j = 1, and ej

k = 0
for k 6= j) belongs to ∆j(π). Also note that for i = 1, . . . , m, the (m − i)-
dimensional faces of the polyhedron ∆j(π) are of the form:

Φj(`1, . . . , `i) ≡
{

p ∈ ∆ : (∀k ∈ M)
(

pj

πj
=

p`1

π`1

= · · · = p`i

π`i

≥ pk

πk

)}
,

where j, `1, . . . , `i are pairwise distinct. The case of m = 3 is depicted in the
figure below. Note that in this case the faces Φj(`) (where ` 6= j) are the straight
line segments, each of which connects a vertex with the respective opposite facet,
passing through the point π.

Figure 1: Geometric interpretation of equilibrium price
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A Nonlinear utilities

In this section we prove the existence of an equilibrium when the utility functions
of the players are not linear but concave.

Denote
Π = {π = (π1, . . . , πn) : (∀i)(0 ≤ πj ≤ 1)} . (22)

A.1 The domain E

Definition 4. Denote by E the set of all triples 〈π, B,S〉 that satisfy
∑

i

bij =
∑

i

sij (j ∈ M) (23)

∑

k∈M

πk bik −
∑

k∈M

πk sik + sij ≤ mi (i ∈ N, j ∈ M) (24)

bij , sij ≥ 0 (i ∈ N, j ∈ M) . (25)

Proposition 11. The set E is compact.

Proof. Obviously, E is closed. We now prove that it is also bounded. Suppose
(π, B,S) ∈ D. Note that since for every j ∈ M ,

πj

∑

i

bij = πj

∑

i

sij

it follows that ∑

i,j

πj bij =
∑

i,j

πj sij

and hence by (24), ∑

i

max
j
{sij} ≤

∑

i

mi .

Since all of the sij ’s are nonnegative, this implies

sij ≤
∑

i

mi (26)

for all i ∈ N and j ∈ M . Furthermore, for every j ∈ M ,
∑

i

bij =
∑

i

sij ≤ n
∑

i

mi

and hence
bij ≤ n

∑

i

mi (27)

for all i ∈ N and j ∈ M .
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A.2 Definition of the domain D

We now define a domain D by dropping the “balance” requirement (23) from
E and adding instead the bounds (26)-(27) from the proof of Proposition 11.

Definition 5. Denote by D the set of all triples 〈π,B, S〉, such that
∑

k

πk bik −
∑

k

πk sik + sij ≤ mi (i ∈ N, j ∈ M)

0 ≤ bij ≤ n
∑

i

mi (i ∈ N, j ∈ M)

0 ≤ sij ≤
∑

i

mi (i ∈ N, j ∈ M)

0 ≤ πj ≤ 1 (j ∈ M) .

For every π ∈ Π and i ∈ N , denote by Di(π) the set of all vectors

ui ≡ (bi1, . . . , bim, si1, . . . , sim)

that satisfy the constraints of D (see Definition 5). Note that for every fixed
π, the set Di(π) is a convex polyhedron. Consider the optimization problem of
trader i as follows. For simplicity, denote also

u′i ≡ (b′i1, . . . , b
′
im, s′i1, . . . , s

′
im) .

Denote by Ui(x) the risk-neutral utility function of trader i. Under trader
i’s belief with probability pij his final net wealth is equal to

mi −
∑

k

πk(bik − sik) + (bij − sij) .

In the linear case his expected utility is:

mi −
∑

k

πk(bik − sik) +
∑

j

pij [(bij − sij)] = mi +
∑

j

(pij − πj)(bij − sij) ,

and, in general, the expected utility is

∑

j

pijUi

[
mi −

∑

k

πk(bik − sik) + (bij − sij)

]
.

Thus, given π, for each i ∈ N , denote by Pi(π) the following concave maxi-
mization problem:

Pi(π)

Maximizeui

∑

j

pijUi

[
mi −

∑

k

πk(bik − sik) + (bij − sij)

]

subject to
∑

k πk (bik − sik) + sij ≤ mi (j ∈ M)
0 ≤ bij ≤ n

∑
i mi (j ∈ M)

0 ≤ sij ≤
∑

i mi (j ∈ M) .
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Denote the objective function of Pi(π) by f , i.e.,

f(ui) = f(ui;π, i) =
∑

j

pij Ui

[
mi −

∑

k

πk(bik − sik) + (bij − sij)

]
.

Also, denote

g(ui) = g(ui;π, i) = max
{
0,

∑
k πk bik −

∑
k πk sik + maxk{sik} −mi

}
.

Finally, for any real C > 0, denote

FC(ui) = f(ui)− C · g(ui) .

Note that if ui is feasible in Pi(π), then FC(ui) = f(ui). Consider the following
concave maximization problem, which we denote by P̃i(π):

P̃i(π)
Maximizeui FC(ui)

subject to 0 ≤ bij ≤ n
∑

i mi (j ∈ M)
0 ≤ sij ≤

∑
i mi (j ∈ M) .

Note that P̃i(π) is obtained from Pi(π) by relaxing the budget constraints and
adding a penalty for violating them. Denote by D̃i the feasible domain of P̃i(π),
and note that D̃i is a convex bounded polyhedron, which is independent of π.
For every face Φ of D̃i, denote by aff(Φ) the affine span of Φ. Denote by v(Φ)
a maximizer of FC(ui) over aff(Φ), and denote by Vi the set of all the v(Φ) for
all faces Φ of D̃i. One of the members of Vi is a maximizer of FC(ui) over D̃i.

Denote
ε = ε(π) ≡ min{g(v) : v ∈ Vi, g(v) > 0} .

Let v∗ ∈ Vi be a maximizer of f(v) over D̃i. Denote

C(π) ≡ f(v∗)
ε(π)

.

It follows that if w ∈ Vi is not feasible in Pi(π), then for every C ≥ C(π),

FC(w) = f(w)− C · g(w)
≤ f(v∗)− C(π) · ε(p)
= f(v∗)− f(v∗) = 0 .

Thus, with such a large C, an optimal solution of P̃i(π) must be feasible in
Pi(π). Now, recall that Π is compact, define

C∗ ≡ max{C(π) : π ∈ Π} ,

and denote
F ∗(v) = FC∗(v) .
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A.3 Definition of the domain H

We now define a domain H by dropping the budget constraints from D.

Definition 6. Denote by H the set of all triples 〈π, B,S〉 such that

0 ≤ bij ≤ n
∑

i

mi (i ∈ N, j ∈ M)

0 ≤ sij ≤
∑

i

mi (i ∈ N, j ∈ M) .

0 ≤ πj ≤ 1 (j ∈ M) .

Obviously, H is box and hence homeomorphic to a ball.

A.4 Definition of a continuous mapping on H

We now define a continuous mapping Ψ : H → H. The mapping Ψ maps a
triple 〈π,B, S〉 ∈ H to a triple 〈π′,B′,S′〉 ∈ H as explained below.

A.4.1 Definition of π′

Given B and S, for every j ∈ M , denote the “excess demand” by

ej ≡
∑

i

bij −
∑

i

sij

and set

π′j = max {0, min{1, πj + ej}} =

{
min{1, πj + ej} if ej ≥ 0
max{0, πj + ej} if ej < 0

.

The following is obvious:

Proposition 12. If 0 ≤ πj ≤ 1 for every j ∈ M , then

(i) for every j ∈ M , 0 ≤ π′j ≤ 1,

(ii) if for every j ∈ M ,
∑

i∈N bij =
∑

i∈N sij, then π′ = π.

(iii) If π′ = π, then for every j ∈ M , (1 ) if 0 < πj < 1, then ej = 0, (2 ) if
πj = 1, then ej ≥ 0, and (3 ) if πj = 0 then ej ≤ 0.
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A.4.2 Definition of (B′, S′)

We now set the values of (B′, S′). For every i ∈ N and for every v ∈ Vi, denote

αv(π) = αv(π; i) = max{0, F ∗(v)− F ∗(ui)} .

Note that αv(π) is a continuous function of π. Next, given i, π and ui,the
part of the image under Ψ that is denoted by u′i is the vector defined as follows.
Denote

α∗(π) =
∑

v∈Vi

αv(π) .

If α∗(π) = 0, define u′i = ui; otherwise, α∗(π) > 0, and we set

u′i = ui +
min{α∗(π), 1}

α∗(π)
·

∑

v∈Vi

αv(π)(v − ui) .

Recall the abbreviated notation where the components of u′i are the following:

u′i = (b′i1, . . . , b
′
im, s′i1, . . . , s

′
im) .

Proposition 13. The vector ui is a feasible solution of the problem P̃i(π).

Proof. Note that if α∗(π) 6= 0, then by convexity, the vector

ūi ≡ ui +
1

α∗(π)
·

∑

v∈Vi

αv(π)(v − ui) =
1

α∗(π)
·

∑

v∈Vi

αv(π)v

is a feasible solution. Therefore, by convexity, u′i is also feasible.

Proposition 14. The mapping from (π, ui) to u′i is continuous.

Proof. Because of the factor min{α∗, 1}, the mapping from (π,ui) to u′i is
continuous even at points where α∗(π) = 0.

Proposition 15. u′i = ui if and only if ui is an optimal solution of P̃i(π).

Proof. α∗(π) > 0 if and only if F ∗(u′i) > F ∗(ui). Also, αv(π) > 0 if and only
if F ∗(v) > F ∗(ui). It follows that α∗(π) = 0 if and only if ui is an optimal
solution of P̃i(π). Also, α∗(π) = 0 if and only if u′i = ui. This implies the
claim.

Theorem 3. There exists an equilibrium.

Proof. Because Ψ is continuous over the polyhedron H, it follows from Brouwer’s
fixed-point theorem that Ψ has a fixed point. Thus, suppose π′ = π, B′ = B,
and S′ = S, i.e., u′i = ui for every i ∈ N .
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First, if for every j ∈ M , 0 < πj < 1, then for every j ∈ M ,
∑

i bij =
∑

i sij .
Thus, in this case, the triple 〈π, B,S〉 satisfies all the conditions that define the
domain E. Furthermore, because the balance constraints are satisfied, it follows
that the bounds (26)-(27) from the proof of Proposition 11 hold for every point
in D. Hence, for every i ∈ N , the vector ui is optimal not only in Pi(π) but also
in the respective optimization problem of player i as required in an equilibrium
per Definition 1, where these additional bounds are not imposed.

In general, we now show that if the balance constraints are not satisfied for
some outcomes j ∈ M such that πj = 0 or πj = 1, then B and S can be modified
into certain B̃ and S̃, so that the resulting triple 〈π, B̃, S̃〉 is an equilibrium.
This is shown as follows.

For every j ∈ M such that
∑

i bij =
∑

i sij , we set b̃ij = bij and s̃ij = sij

for every i ∈ N .

Consider an outcome j ∈ M such that πj = 0 and
∑

i bij <
∑

i sij . Thus,
there exists an i such that sij > 0. Because of the optimality of ui from the point
of view i, it follows that pij = 0, and trader i is actually indifferent with regard
to the value of sij . Therefore, sij could be decreased by a little bit without
compromising optimality. Denote by R the set of traders i such that sij > 0.
Let ai ≥ 0, i ∈ R, be any numbers such that

∑
i∈Ri

ai =
∑

i∈N (sij − bij) and
ai ≤ sij . If R = {i1, . . . , ir}, then such ais can be found, for example, by setting
aik

= sik,j for k = 1, . . . , p− 1,

aip =
∑

i∈N

(sij − bij)−
p−1∑

k=1

sik,j

and aik
= 0 for k > p. We can modify the sijs of i ∈ R into

s̃ij = sij − ai (i ∈ R) ,

set s̃ij = 0 for i such that sij = 0, and set b̃ij = bij for all i, so that
∑

i b̃ij =∑
i s̃ij .

Analogously, consider an outcome j such that πj = 1 and
∑

i bij >
∑

i sij .
Thus, there exists an i such that bij > 0. Because of the optimality of ui from
the point of view i, it follows that pij = 1, and trader i is actually indifferent
with regard to the value of bij . Therefore, bij could be decreased by a little bit
without compromising optimality. Like the previous case, we can find b̃ijs and
b̃ijs such that

∑
i b̃ij =

∑
i s̃ij . Obviously, the above-described modifications

do not violate the constraints of the individual optimization problems and the
modified amounts remain optimal from the points of view of the individual
traders. Therefore, 〈π, B̃, S̃〉 is an equilibrium.

Proposition 16. If π = (π1, . . . , πm) is a vector of equilibrium prices, then
there exist B and S such that 〈π,B,S〉 is an equilibrium, and for every i ∈ M
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and j ∈ M , ∑

k

πk(bik − sik) + sij = mi .

Proof. As in the proof of Proposition 5, each trader can satisfy the equality
by increasing the trading with himself, without compromising optimality and
without violating the balance condition of the equilibrium.

As noted in Section 3, equilibrium prices sum to 1 even when the utility
functions are nonlinear. This implies that Proposition 8 also generalizes as
follows.

Proposition 17. If π = (π1, . . . , πm) is a vector of equilibrium prices, then
there exists a matrix B̄ = (b̄ij) (i ∈ N , j ∈ M) such that

(i) for every i ∈ N , given π, the maximum utility that trader i can achieve
by buying and selling is equal to

∑

j∈M

pijUi

[
mi −

∑

k∈M

πk b̄ik + b̄ij

]
,

(ii) for every i ∈ N , ∑

j∈M

πj b̄ij = mi ,

and

(iii) for every j ∈ M , ∑

i∈N

b̄ij =
∑

i∈N

mi .
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