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I Introduction 

 

Although Black-Scholes formula is very popular among market practitioners, when 

applied to call and put options, it often reduces to a means of quoting options in terms of 

another parameter, the implied volatility. Further, the function  
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is called the implied volatility surface. Two significant features of the surface is worth 

mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the 

‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level 

of implied volatilities changes with time thus deforming it continuously. Since, the black-

scholes model fails to model volatility, modeling implied volatility has become an active 

area of research. At present, volatility is modeled in primarily four different ways which 

are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. 

The problem with this approach often lies in finding the market price of volatility risk 

which can’t be observed in the market. b) The deterministic volatility function (DVF) 

which assumes that volatility is a function of time alone and is completely deterministic 

[2,3]. This fails because as mentioned before the implied volatility surface changes with 

time continuously and is unpredictable at a given point of time. Ergo, the lattice model 

[2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that 

implied volatility can be constructed by forming basis vectors. Further, one can use 

implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied 

volatility[5]. However, estimating parameters for such processes is very difficult and one 

needs to fit the parameters to such data. Further, one needs to check whether these 

parameters satisfy the arbitrage bounds as specified by Lee et.al.[6]d) the last but the 

most commonly used method is an empirical way to fit data (using statistical methods) 



involving both parametric [7] & non-parametric regression[8].For most of these models, 

PCA (principal component analysis) together with GARCH seems an obvious choice. 

Using these methods mentioned above, researchers have performed an in depth analysis 

of implied volatility. For example, [9] performed a PCA analysis on different maturity 

buckets of options to study how different loading factors impact implied volatility for 

each distinct bucket. 

In this work, we extend the idea of [9] and classify options both on the basis of 

moneyness and maturity i.e. we form maturity & moneyness buckets and study the 

impact of different PCA factors on implied volatility. We believe that this will give a 

clear idea to a trader; which factor to look for when hedging an option of a specific 

moneyness and a specific maturity. In this context, we also come across a novel way of 

looking at gamma and vega (greeks) using principal components. Further, we also 

develop a comprehensive model to incorporate the effect of maturity on implied volatility. 

Section II describes the methodology while Section III deals with our results & 

interpretation of those results. Finally we conclude with Section IV. 

 

II Data Collection & Model  

 

In our work, we consider call option prices on S&P 500 index (ticker SPX) which we re 

obtained from optionmetrics1. The data was considered from June 1, 2000 to June 20, 

2001. Note that these years were turbulent owing to a bubble burst and resulted in high 

volatility. Once the data was obtained, following was done to sort data for our use: 

a) All options with less than 15 days of maturity were ignored as they result in high 

volatility.  

b) Data values with call prices less than 10 cents were also ignored. 

c) Average value of ask & bid price was taken to represent the call price. 

d) All call prices which were less than the theoretical value (calculated using Black-

Scholes) were ignored for arbitrage reasons 

We then divide the entire data set in moneyness (represented by m) buckets of m<-1,  

-1<m<-0.5,  -0.5<m<0, 0<m<0.5, 0.5<m<1, 1<m where the moneyness is defined as 
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Where St = Index value at time t 

            r = the risk free rate of interest (as given by treasury) 

            T = maturity date  

             τ=time to maturity of options (T-t) 

             K= strike price 

Taking m as in (2) incorporates the effect of time (τ) & strike price (K) in moneyness. 

We also divide the entire data into different maturity buckets of 15-30, 30-60, 60-90,  

 90-150, 150-250 days. We then build a model to incorporate the effect of maturity and 

moneyness in implied volatility. The following four different models were constructed, 

simulated and compared: 
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We considered these models and then compared the results to see whether the later 

models are accurate.  Further, we performed PCA on the sorted data mentioned above, 

both in terms of moneyness bucket as well as maturity bucket.  

 

III PCA  (Principal Component Analysis)  

 

A ) PCA based on moneyness buckets 

The PCA analysis was done both on moneyness buckets an maturity buckets, we first 

consider the is the moneyness bucket. Firg. 1 shows the implied volatility Vs strike price 

for a fixed maturity of 60 days. One can see the ‘skew’ in the figure. Table I summarizes 

the percentage contribution of first three principal components to the total variance. 
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Moneyness
of Call 
Option 

1st PC 2nd PC 3rd PC Total 
explained 
Variance
By 1st 
three 
PCs 

 
 
 
 
 
 
 m<-1 51.561 39.379 9.0596 100% 

-1<m<-0.5 50.548 26.729 11.646 88.923% 

-0.5<m<0 45.248 23.932 18.656 87.836% 

0<m<0.5 50.017 19.536 16.346 85.899% 

0.5<m<1 37.732 24.999 22.1 84.831% 

m>1 62.871 23.417 10.996 97.284% 

Implied Volatility Vs Moneyness for a fixed maturity
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Fig. 1 Implied Volatility Vs Strike Price 
 
 
 
 

Moneyness 
of Call Option 

1st PC 
(in %) 

2nd PC 
(in %) 

3rd PC 
(in %) 

Total 
explained 
Variance 
By 1st three 
PCs (in %) 

m<-1 51.561 39.379 9.0596 100 

-1<m<-0.5 50.548 26.729 11.646 88.923 

-0.5<m<0 45.248 23.932 18.656 87.836 

0<m<0.5 50.017 19.536 16.346 85.899 

0.5<m<1 37.732 24.999 22.1 84.831 

m>1 62.871 23.417 10.996 97.284 

  
Table 1. Contribution of different principal components towards the total variance of 

implied volatility for call options 



The following are the worth noting observations: 

 

a) As we traverse from ‘out of moneyness’ (m<-1) to ‘at the moneyness’ and then to ‘in 

the moneyness’ (m>1) for call options, we find (fig.2) that the total variance in the 

implied volatility explained by the first three components first decreases (from 100% 

for m<-1 to 84.831% for 0.5<m<1 ) and then increases (to 97% for m>1). We believe 

that this happens because ‘at the moneyness’ is highly ‘unstable’ or most sensitive to 

hedging and hence can be hardly explained by just the first three components. In 

contrast, ‘out of money’ and ‘in the money’ options are relatively illiquid and stable 

and just need the first three factors to fully explain it. 

b) The first principal component which represents the mean level; decreases initially till 

around the ‘at the money’ level and then increases sharply. As we traverse from out 

of money to in the money, we find (fig. 3) the implied volatility flattening out & 

hence, the contribution of first principal component towards total variance increases 

sharply. Again as described before, the ‘at the money’ regime is highly sensitive (has 

higher variance) and the first principal component is not sufficient to explain it alone. 

Therefore, we expect a dip in the contribution of the first principal component in that 

regime. 

c) The second principal component (contribution towards total variance) which 

represents slope or tilt is expected to flatten out as we move from at the money to in 

the money. This is because; the skew flattens out itself, resulting in a lower 

contribution from the slope (representing the second principal component) towards 

the total variance. We find what we expect in our results (fig. 4). 

d) The third principal component which represents the curvature of the implied volatility 

is crucial for hedging. We find (fig. 5) that the contribution of the third component 

towards total variance peaks near the ‘at the money’ regime. To understand this, we 

can look at ‘gamma’, or the curvature of the call price Vs index price curve which 

also peaks around the ‘at the money’. Implied volatility Vs moneyness can be 

understood as call price (which is directly proportional to volatility) Vs Index price 

(moneyness has a log dependence on the index price and is very sensitive to it). 



Hence, we believe that the third principal component is a novel way of thinking about 

the gamma hedging. 

The figures summarize most of the details mentioned above. 
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         Fig. 3 Percentage contribution towards total variance by the first three components 
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    Fig. 4 Percentage contribution towards total variance by the first component 



 

y = -1.7962x3 + 4.1284x2 - 1.2177x + 22.376
R2 = 0.9452
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       Fig. 5 Percentage contribution of Second principal component towards total variance 
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          Fig. 6 Percentage contribution of Third principal component towards total variance 

          Note that the figure above is skewed towards left 



To summarize, we find that PCA analysis of the moneyness buckets give a good insight 

of the underlying call option itself. It also provides a new way to understand option 

hedging. As we observe from the figures above, the first principal component is most 

important for the ‘in the money’ case, while in the ‘at the money’ regime, the third 

component becomes increasingly important. Still in the ‘at the money’regime, none of the 

three components are sufficient to fully describe the variance in the implied volatility. 

Further, the out of money regime is relatively illiquid and has all aspects of levelness, 

steepness & curvature to it (i.e. all three components are important).   

 

 

Illiquid 
Regime 
 
All Three 
PCs  
important 

•All three PCs 
Are important, 
Highly unstable 
/liquid region 
• Third PC’s  
Component  
contribution rises
sharply 
 

1st PC is most imp.

Implied Vol. 

Average Moneyness 
 

 
The summary has been put in the form of a cartoon above. 
 
B) PCA based on Maturity Buckets 
 

Performing PCA on maturity buckets have already been done by [9]. The aim of our 

work is to verify the result. We find that for short term maturities, all three principal 

components are equally important while for long term maturities only the first principal 

component matters. The result obtained by us has been summarized in Table 2. 



 

Maturity 

of Call Option 

1st PC 

(in %) 

2nd PC 

(in %) 

3rd PC 

(in %) 

Total explained 

Variance 

By 1st three PCs

(in %) 

15-30 56.929 21.359 12.072 90.41 

30-60 69.426 15.266 10.496 95.18 

60-90 88.71 5.41 2.79 96.92 

90-150 81.419 10.712 7.2489 98.83 

150-250 77.38 15.55 4.58 97.5 

 

       Table 2 Percentage contribution of principal components towards total variance 
 
We also performed PCA on both moneyness and maturity bucket, as shown in table 3. 
From the table we can see that for long term maturity and out of money bucket the first 
principal component dominant. However, as the options step out of money the second 
and third component become more and more important. 
 
 -1<m<-0.5 -0.5<m<0 0<m<0.5 0.5<m<1 

Short Maturity 
(T<90) 
 

38.1616 
32.2998 
29.5445 

50.1882 
39.8367 
15.9751 

42.7924 
36.4123 
20.7953 

42.3005 
31.1038 
26.5957 

Long Maturity 
(90<T<250) 

71.6205 
15.9579 
12.4215 

56.222 
27.8128 
15.9652 

38.4003 
36.4862 
25.1135 

41.1661 
31.7541 
27.0798 

     
      Table 3 Percentage contribution of principal components towards total variance with 
respect to both moneyness and matruity 
 
 



 

IV Results on Model & Comparison 

 

As discussed earlier, we developed a model incorporating both the effect of maturity and 

moneyness (described by equations 3-6). The results for each model are shown below. 

Note that in each figure the red colored points represent the real data while the blue 

points represent the fit. On the left one can see the resulting plot during the fitting process 

to extract the parameters and on the right one can see the result of the out of sample 

prediction using the next years’ (June 2001-2002) data. 

 

 

 
 
 
Figure 7 Model representing equation 3 (the Black-Scholes model which assumes 

constant volatility) 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 8 Showing Model represented by equation (4) which takes in account both 

steepness & curvature.  

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 9 Showing Model represented by equation (5) which takes in account steepness of 

moneyness and maturity. 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 10 Showing model represented by equation (6) incorporating curvature of 

maturity  
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RMSE 
(In 

Sample) 
(Fitting)

RMSE 
(Out of 
Sample)  
Prediction 

Model 
I ‐1.4876           0.3033 0.3362 

Model 
II ‐1.6352 0.2702 0.8836       0.1805 0.2001 

Model 
III ‐1.6244 0.2504 0.8779 ‐0.1208 0.2565   0.1802 0.1999 

Model 
IV ‐1.6108 0.2538 0.8783 ‐0.5613 0.2202 2.5269 0.1801 0.1998 

 

 

From the root mean square (RMS) analysis we find that model 4 & 3 are better than 

model 2, however, the difference is not appreciable. 
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