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 Hedge Fund Returns: Distributional Characteristics
 How to Calculate Robust VaR Numbers

» Portfolio Construction in the presence of fat tails
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|deally: A trading strategy transforms underlying asset return distribution favorably



Distribution of S&P 500 Monthly Returns 1951-2007
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Tsallis distribution: Fits well to daily returns also with q = 1.4.

Used for non-Gaussian option pricing
[Borland 2002, Borland &Bouchaud 2004].



Lipper TASS Database: 2883 Funds, 1300 Funds of Funds, Monthly Returns

Hedge Fund Returns
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 Hedge Fund managers do shift the mean from
0.16 t0 0.43

 Tails are much fatter, monthly returns well-fit by
g=1.4

* The “ideal” distribution (small left tail) is not
achieved, but also no significant negative skew



« q=1.3- 1.5 fits well to hedge fund
monthly returns

* How can we use this for

- Risk Control
- Portfolio Construction



VaR

* 5% VaR: You have a 5% chance of getting
returns less than VaR (per $)

« Common calculation methods:
- Assume a distribution (eg. Gaussian)
- Use the past N days historical price changes

- Use MC simulations of future returns



VaR

* 5% VaR: You have a 5% chance of getting
returns less than VaR (per $)

« Common calculation methods:

- Assume a distribution (eg. Gaussian)
Can’t be good! Fat tails!

- Use the past N days historical price changes
Simple. Can we do better?

- Use MC simulations of future returns
Very compute-intensive!



Robust Calculation of VaR

An experiment:

« Simulate 500 returns drawn from q = 1.4 Tsallis
distribution. Repeat 250 times.

 For each sample:

Method 1: Estimate 5%-ile from 500 day
generated data - 250 values of VaR.

Method 2: Fit Tsallis distribution of index g to 500 day
generated data. Then calculate 5%e-ile of that
fitted distribution - 250 values of VaR.



Robust Caculation of VaR (Example 5%)

| 4 VaR from Method 2 (&) <VaR> =-2.12+0.11

| ® VaR from Method 1 ‘%
e VaR from Method 1 (%3 (VaR) = -2.10+0.17

P(VaR)| ® TrueVaR=-2.13

VaR from 250 runs each of length 500




 Fitting Tsallis distribution to data and then
calculating VaR - More robust estimate

* Using q=1.4 is a better prior than the
Gaussian distribution

» Better than unconditional VaR using
historical data (recent history might be
anomalous)



Portfolio construction in the
presence of fat-tails

» Single strategy case:

low to calculate optimal holdings?



One strategy is:

Maximize expected long-run profit based
on log-utility function (Kelly criterion)

<10g(1 + hx)> P(xo)

h = holding (position size)
U = expected return

O = standard deviation (volatility)



g-Kelly criterion

[log(l+h)N| 1+ (g~ 1) =\,

Gaussian, q=1

Tsallis,g=1.5

2

Not good —
any slightly positive expected return implies an
extremely large position because there is no tail risk

Good —
large position sizes are penalized by the tail risk



Example: Daily expected return u =25 bpand o=1%

Calculating Optimal Holdings with g = 1 (Gaussian)
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Example: Daily expected return u =25 bpand o=1%

Calculating Optimal Holdings with g = 1.5
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These portfolios might be optimal, but some investors
might not like the high leverage

1) Might not be log-utility maximizers
i) Might be irrational

* One more ingredient:

- Prospect Theory
(Tversky and Kahneman, Nobel Prize 2002)

(log(1 + hx)) , .

a<l1

Gives even more weight to the tails — incorporates subjective investor fear,
not just actual probability of losses



Results using g-Kelly & Prospect Theory q=1.5, a =0.8:

A real trading strategy: returns with and without scaling
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Same predictive signal but better risk control - superior returns



Remember our cartoon!
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Ideally: A trading strategy transforms underlying asset return distribution favorably




Results using g-Kelly & Prospect Theory g=1.5, a = 0.8:

Another real trading strategy: returns with and without scaling
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* Multi-strategy case:



Results using g-Kelly & Prospect Theory g=1.5, a = 0.8:

Applied to a multi-strategy portfolio of real trading strategies
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« Multi-strategy case:

- Combined strategies in a naive approximation

- Used g-Kelly & Prospect Theory to get leverage rule for whole
portfolio

Work still to be done:

- Use g-Kelly & Prospect Theory directly on the multivariate
distribution

- Incorporate asymmetry between profit seeking and loss
aversion.



Conclusions

Hedge fund monthly returns distributed according to
Tsallis distribution withq=1.4

This is quite stable across strategy types

Using g=1.4, more robust VaR numbers can be
calculated

By taking tail risk into account, optimal position sizes can
be found that — at least for the strategies studied here —
produce more desirable return distributions



