
Capital Structure Arbitrage with a

Non-Gaussian Asset Model

MS&E444 Investment Practice Project Report

Jack Kim

Mike Kokalari

P.K. Wilfred Wong

Will Haber

Francisco Godoy



Capital Structure Arbitrage with a Non-Gaussian Asset Model

Abstract

Capital structure arbitrage refers to the practice of exploiting relative pricing

inefficiencies in the market by taking long and short positions across different

instruments and asset classes of the capital structure of the same firm. This project is a

practical investigation into the risk, return and implementation-wise complications of

capital structure arbitrage strategies across equity options and credit default swap

positions. In specific, we construct and test 4 different strategies, starting from a basic

discrepancy threshold strategy to one that looks at convergent momentum. There have

been a number of other studies on the profitability of basic capital structure arbitrage

strategies (Yu 2005). The key difference to our approach is that we identify mispricings

through a model of non-Gaussian asset dynamics based on the Tsallis distribution, and

we attempt to identify some general strategy-independent observations by exploring a

wider variety of strategies. Our results point toward the need to take a closer look at

the dynamics of the spread discrepancies, while demonstrating the difficulties of

identifying convergent mispricings.



1. Introduction

Suppose we are observing the stock price and the price of a 3Y European call

option of a given firm. Thanks to Black, Scholes, Merton and the numerous

developments that have followed in the field of option pricing, we know that if we

assume appropriate dynamics for the stock price (e.g. geometric Brownian motion, log

Levy), then there is a clearly defined relationship between the price of an option and

the price of the underlying stock (the catch is in designating "appropriate" dynamics).

Based on this relationship we can keep our options position well hedged by neutralizing

first and second degree price, time and volatility sensitivities with positions in the

underlying. What about the price of vastly different financial instruments that constitute

the capital structure of the same firm? Since both the price (spread) of a 3Y zero

coupon bond and the equity of a firm should bear some relation to the financial health

of the given company, it seems reasonable to predict there to be a relationship between

the price of the two instruments. Suppose that we have established a relationship

between the two instruments. This will then enable us to infer the price of one from

the other. If we have faith in our model specification and the accuracy of our model

parameter estimations, and the theoretical model price differs greatly from the real price

observed in the market, our faith implies the belief that the discrepancy will eventually

dissipate for the prices to converge. Capital structure arbitrage stems from the question

of how one might profit from such situations where relative mispricings have been

identified.

Capital structure arbitrage in the traditional sense refers to the practice of exploiting

relative mispricings in the market by taking long and short positions across different

financial instruments that constitute the capital structure of the same firm. Capital

structure arbitrage in recent years has departed from this traditional notion to include

trades across instruments contingent on the same firm but not necessarily issued by the

firm itself. In particular, the recent surge in interest in the field can be largely

attributed to the development of liquid markets for credit derivatives. Traditionally, even

with relatively accurate models and correct directional views, investors had difficulties in

executing long equity, short debt trades due to liquidity constraints in the debt market.

The development of large liquid markets for credit derivatives has facilitated the

construction and execution of portfolios that express relative directional views on debt

and equity.

The term "capital structure arbitrage" itself is a misnomer in that it is far from our

notion of arbitrage in the strict mathematical sense. Discrepancies in theoretical and



market prices may come from a variety of different sources. Model misspecification and

errors in parameter estimation are obvious problems but even barring these issues, it

may be that there are inherent liquidity differences or unseen systematic risk factors that

we are taking on in the heterogeneous instrument markets, that put an intransient wedge

between the prices. Even if we do identify genuine mispricings correctly we do not

have an accurate gauge on the rate of convergence, and thus we do not know if our

position is justified given the capital cost. Since we are applying partial hedges across

vastly different instruments, the hedge is not always effective and positions may become

extremely risky. Suppose that we have the simple situation where an investor, based on

his theoretical model, believes that shareholders have been slower in the uptake of

negative information than bondholders. He would then short the stock and long the

bond. The life of the strategy lies in convergence. In the ideal situation where both

prices inch towards each other he gains on both the position and the hedge. When it

was in fact the case that the bondholders were the ones that were overly pessimistic,

the hedge still mitigates the losses. However it might be that the model predictions

were completely off and the two prices diverge further. In this case losses amount on

both the position and the hedge. The hedge not only provides no safeguard but actually

exacerbates the situation and can lead to a full loss on the margin. During the course

of this project we progressively install measures and refinements to avoid or mitigate

the effects of some of the aforementioned difficulties.

The first step towards constructing a capital structure arbitrage strategy is finding

the relationship between the two instruments under consideration. In his general

empirical overview of the risk and return of basic capital structure arbitrage strategies,

Yu (Yu 2005) uses the CreditGrades model based on the Black and Cox first passage,

in order to compute the theoretical CDS spreads from equity prices. Hull (Hull, Nelken

& White 2003) provides a direct link between CDS spreads and equity option prices by

estimating the leverage ratio and asset volatility parameters of the Merton model through

the implied volatilities of two equity options. In this project we wish to investigate

CDS vs. equity options plays, but in the process of establishing the relationship

(computing the theoretical CDS spreads from equity prices) we focus on modeling

accurate asset dynamics rather than on the issue of which specific structural model we

are to employ. As such we simplify matters by assuming default to be analogous to

equity default, occurring when the equity price drops below 95%. However unlike the

previous models that are based on geometric Brownian motion, we use the non-Gaussian

q-alpha model developed by Lisa Borland et al. at EvA Funds for equity dynamics in

order to realistically model the non-Gaussian (positive excess kurtosis and skew) traits

observed in the market.



The second section of the paper provides a brief overview of the most salient

features of the q-alpha model used in this project for asset dynamics. The third section

explains how we use this model to compute the default probabilities from which we

calculate the theoretical CDS spreads. The fourth section provides a detailed description

of the four strategies that we designed and tested in this project. The first strategy is a

basic discrepancy-threshold strategy where trades are put on when the difference

between the theoretical and market rates are above a certain threshold and taken off

when convergence occurs. In the second and third strategies we rank and trade only the

top decile of discrepancies. In the second strategy the portfolios are static within the

holding periods while they evolve dynamically in the third. The final strategy uses

convergent momentum as the ranking criteria. In the fifth section we provide details of

the data set and some illustrative results from our tests, while we conclude in the final

section with suggestions for further extensions.

2. The q-alpha Model

While Brownian motion based continuous diffusion models provide tractable means

of modeling financial instruments and underlying asset value processes, empirical studies

over the years have shown that they do not describe properly the distributions typically

observed in the market. In particular, these models are inherently inadequate in

modeling jump discontinuities, asymmetry and positive excess kurtosis (fat tails), traits

that frequently occur throughout empirical data. One possible remedy that is of recent

interest is the use of log-Levy models. However unless we apply strict simplifying

restrictions on the characteristics of the underlying Levy process, computations are often

intractable with no closed form analytical pricing formulas that involve first hitting

probabilities (Kim 2007). Another unattractive feature of Levy and stochastic volatility

models is that they revert quickly back to the Gaussian (Borland 2007).

Lisa Borland et. al (Borland and Bouchaud 2006) tackle the issue of skewness and

positive excess kurtosis by introducing the non-Gaussian q-alpha model based on the

Tsallis distribution, traditionally used in the field of non-extensive thermo-statistics.

Capitalizing on the power law characteristic of the distribution, both positive excess

kurtosis and skewness are modeled via statistical feedback. The asset dynamics are

specified by the following evolution     



where       
and  is a standard Wiener process.  controls the level of skewness while  is the

entropy index giving fat-tails.       corresponds to the ordinary Gaussian.  is

the conditional probability with statistical feedback, and  evolves according to the

non-linear Fokker-Planck equation      
.

This gives rise to the generalized Black-Scholes PDE (Borland and Bouchaud 2006)                
from which we are able to obtain analytical pricing expressions on contingent claims.

The empirical work in their paper shows that this model closely reproduces market

distributions. This is the model that we adopt for equity price dynamics in this project.

3. Computing the Default Probabilities and Theoretical CDS Spreads

As mentioned previously, we adopt the simplifying assumption that default occurs

when the stock price of a given firm declines by more than 95%. Ideally we would run

Monte-Carlo simulations to determine the first passage probabilities of the stock process.

This was the route first attempted, however the feedback loops proved to be excessively

time consuming, prompting us to devise an alternative scheme. Our essential observation

was that the we have a closed form options pricing formula through which we can

obtain the entire option surface. This surface already implies the probability distribution

of the stock process under q-alpha dynamics. We can thus obtain the default

probabilities via numerically differentiating the price of either deep ITM calls or deep

OTM puts.

Note that       ∞  .

Hence        ∞     ∞∞      
The call price  is the discounted expected value of the payoff   where  is



the stock price at the exercise date  , and  is the strike. Therefore        ⇒         .

Assuming that default is an absorbing state and thus ignoring the possibility of recovery

after going under the default barrier, we obtain the default probabilities via numerically

differentiating the option prices.

This enables us to build the theoretical CDS curve by finding the CDS rate values

for each maturity that minimize the norm of the difference between the default

probability curve implied by the options market and the default probability curve that

results from putting the theoretical CDS curve through the stripper function. We

sequentially solve for each CDS rate while preserving the rates that have already been

established - all the previously solved CDS rates remain unaltered during the search for

the latest entry in the theoretical CDS curve.

4. Trading Strategies

4.1 Data

We used CDS and options data spanning a 2 year period leading into 2003, on the

100 most liquid single names. The data was provided to us by EvA. Although we had

5 different maturities for the CDS rates at our disposal, we principally carried out the

tests with the 3Y. The P/L results showed very little variation when tested with the

other maturities.

4.2 Preliminaries

The core program reads in the raw CDS and options data and cleans, sorts,

merges the data to create the two matlab data files: cdsData.m and optionsData.m. If

those two data files are present then the program will not recreate them. Next the

program processes the market data in 3 stages to create tradeData.m. tradeData is the

matrix with all the results including theoretical CDS rates, trading/hedging decisions, and

running P&L calculations. This matrix encapsulates all the current information

accumulated. The 3 stages to create the matrix are:



buildTradeData

makeTradeDecisions

calcPL

buildTradeData reads in the raw data, unless the cdsData and optionsData refined data

files are present. It then populates the initial data into the tradeData matrix, including

building the theoretical CDS curves. The process is very time consuming so if the

process is interrupted and restarted later, the buildTradeData program will resume from

where it left off.

makeTradeDecisions evaluates the market vs theoretical CDS rates each day and

decides to go long / short / or take no position, which results in a +1, -1 or 0 in the

‘active’ field of the tradeData matrix. At the time of a new trade, the date and traded

spread are recorded. The current simple trade rules stipulate that when a stop loss

occurs a new trade will not be entered into for ‘n’ days.

calcPL first populates the tradeData matrix with the number of options to use as

the partial hedge for the CDS position. The options hedge is only computed on the day

a new trade is made and then the number is copied for all rows for which the trade is

active. To calculate how many options are needed to hedge the CDS trade we need to

know the sensitivity of the theoretical CDS rates to a 1 point change in volatility –
which we call dCDSdV. With the simulation method this would mean calling

MCSurvivorSimulation twice, both times with a high number of simulations but we

avoid the excessive time load by the options implied probability scheme mentioned in

the previous section. After the option hedge data is populated into tradeData then

calcPL computes the dailyPL based on 1) movements in the actual CDS rates, 2) the

vega P&L on the options position, 3) the gamma P&L on the options position. The

positions are delta neutral.

In implementing the strategies we were forced to make a number of simplifying

assumptions. The most noticeable one is that the options and CDS positions are

‘constant maturity’ and ‘constant at-the-money’ (Yu 2005, also makes these assumptions

in his hedging scheme). In a real trading situation, if the 1 year theoretical and market

CDS rates are out of line then the trader will go long the 1 year CDS and short the 1

year at-the-money options. In a few weeks the spot is likely to be quite different from

the strike, which will change the vega of the options position, and the maturity of both

legs of the trade will not be 1 year anymore. We make the simplifying assumption that

the options are always at the money and that both legs of the trade are a constant 1

year maturity. In theory it’s possible maintain the trade at a near constant maturity,



constant at-the-money state by liquidating the trade at the end of each day and then

repurchasing 1 year options that are currently at-the-money and transacting in a new 1

year CDS. That approach would incur significant bid-offer costs, so by ignoring these

bid-offer costs with the constant maturity, constant at-the-money assumption, we are in

effect demonstrating an upper bound on the profitability of the strategy. The options

delta rebalancing is done once a day, at the close of the trading day and the options

vega and gamma are estimated from closed form Black Scholes. The trading rules are

implemented on a close of business basis ie there is no intra day stop loss–
possibility. We use the interpolated 1 year interest rate for all calculations. Interest rates

are a second order effect in the phenomena we’ll be testing, so this simplification

should not have a great impact on our results.

The dCDSdV, the sensitivity of CDS rates to a 1 point change in the volatility

level, is computed at the time of the trade and then the number of options used to

hedge the CDS is held constant. This will cause some second order distortions. In

addition we tested the strategies with real implied  values but for most cases there

were no noticeable differences with using    which was suggested in the Borland

(Borland and Bouchaud 2006) paper. In some cases the implied  values were

completely out of line, returning illogical values for the other program chains, so we

hard-coded the value as   .

We have 2 years of daily market data on 100 companies. We’ve given each

company an arbitrary code number, based on alphabetic sorting. The market data is in

two matrices, cdsData & optionsData:

cdsDatacolumns:

companyCode, date, cds1, cds2, cds3, cds4, cds5

The date field is an integer which is excel’s internal date number

optionsDatacolumns:

companyCode, date, optionsMaturityDate, impliedVol, q, alpha, interestRate

There are other extraneous data columns. impliedVol is the implied volatility to be used

in the Tsallis distribution model.

We create a third matrix, tradingData

tradingDatacolumns:



1 - Company number

2 - Date

3 - CDS1

4 - CDS2

5 - CDS3

6 - CDS4

7 - CDS5

8 - spot price

9 - sigma

10 - alpha

11 - q

12 - r

13 - volatility data maturity date

14 - dv01_1

15 - dv01_2

16 - dv01_3

17 - dv01_4

18 - dv01_5

19 - theoCDS1

20 - theoCDS2

21 - theoCDS3

22 - theoCDS4

23 - theoCDS5

24 - dCDSdV1

25 - dCDSdV2

26 - dCDSdV3

27 - dCDSdV4

28 - dCDSdV5

29 - optionGamma

30 - optionVega

31 - active

32 - tradedSpread

33 - stoppedOut

34 - optionPosition

35 - dailyPL



The sigma/alpha/q/r parameters are as close as possible to the 1 year from the

optionsData matrix. First option data between 9 months and 15 months is searched. If

none is found then maturities greater then 15 months is searched. If none is found

then data between 6 months and 9 months is searched. If no data with maturity

greater then 6 months is found then 0’s are put into these fields. The date of the

data’s maturity is recorded in column 13.

The theoretical CDS rates are calculated as described in the previous section. The

dv01 data fields give the p/l of an ‘n’ year maturity cds swap position when the ‘n’

year cds rate moves by 1 basis point. The option gamma and vega are computed using

the standard Black Scholes model which uses sigma. We make the assumption that the

strike = spot, and maturity = 1 year. The ‘active’ data field holds values -1, 0, 1

where -1 = short CDS trade is active, 0 = no trade is active, 1 = long CDS trade is

active. The options position on the data of the trade is calculated as:

position = (dCDSdV * dv01_n * $10M) / optionsVega

The ‘n’ in the expression above is an input parameter because we could in theory test

different maturity trading strategies. stoppedOut records the day a stop loss occurred.

4.3 Strategy 1 : Basic Threshold Strategy

Since the other strategies are variations of this basic strategy, despite its simplicity,

we will devote some detail to the technical and algorithmic aspects. The basic scheme

is extremely simple. Each day we calculate the theoretical CDS rates for all the

companies. We have a trade activate threshold  , take profit level  , convergence

bound  , and stop-loss level of , specified as input parameters. Let        
When no trade is currently active, if the   we go long CDS and short the

appropriate options hedge. If   we activate a short CDS position and long the

appropriate options hedge. When a long CDS trade is currently active, if    our

stop-loss policy is invoked by which we close out the position. If    we take

profits by closing out the position. When a short CDS trade is currently active, if   our stop-loss policy is invoked by which we close out the position. If   we take profits by closing out the position. Note that if we do not wish to

use either of these stop-loss or take-profits policies we can nullify them by specifying

an extremely high value for their thresholds. However, as we will see, the stop-loss

policy is critical in avoiding huge losses in divergence-divergence situations where we

lose on both the position and the hedge.    can all be specified in terms of



absolute values or relative to the current spreads. All single CDS trades are made on a

US$10M notional, and the options hedge is put in place to delta neutralize the

portfolio. Hence we can either hedge with calls or puts and each day there will be a

gamma rebalancing P/L. Convergence is defined to occur when the two rates come

within some small  neighborhood (     ) and checked daily to

execute daily convergence close-outs.

4.4 Strategy 2: Rank and Hold

Strategy 2 is a refinement of the previous strategy. In strategy 1 we take on any

trade that exhibits a wide enough discrepancy between theoretical and market CDS rates.

As we will see in the results in the next section, by doing so we take on too many

bad trades that never converge, and often even diverge further. The motivation for the

second strategy is that perhaps the most egregious discrepancies are the ones that have

a genuine mispricing component more likely to dissipate over time. We accept that

there may be some other factors at play that put a systematic wedge between the

prices. Hence we do not always aim at full convergence, but try to capitalize on

convergent movement whenever possible. The strategy works as follows. First we define

a rebalancing or holding period. At the beginning of the period we rank the companies

according to the absolute value of the difference between the theoretical and market

CDS rates. Then we form a portfolio that consists of the top 10% of the companies in

terms of these differences. Each day, we check for convergence. If a company’s

theoretical and market rates converge, then we close out its position and pocket the

profit. At the end of the holding period, we close out the whole portfolio (this allows

us to both close out positions that appear to be non-convergent, and pocket from any

partial convergence that may have occurred in between the periods). At the same time,

we again form a new portfolio that consists of the top 10% of discrepancies. However,

in this new portfolio, we do not hold any companies that have just been closed out due

to non-convergence in the immediate previous portfolio even though those companies

may have very large differences between the market and theoretical rates.

As a demonstration, suppose that in the beginning, we form a portfolio consisting of

IBM, Microsoft, HP and Dell with a holding period of 30 days. Each day, we check

for convergence. On day 5, Microsoft converges and we close out Microsoft. Between

day 5 and day 30, no companies converge and the portfolio remains unchanged. On day

30, the holding period ends and on that day IBM and Dell finally converge, but HP

still has not converged. We close out IBM and Dell due to convergence and kick out

HP because we perceive it as having no hope of convergence in the immediate future.



We then form a new portfolio. We look at companies that have the largest differences

between the market and theoretical rates. Suppose Microsoft and HP once again have

large differences. We are not going to include HP since it is in the previous portfolio

and has failed to converge previously. The new portfolio will consist of other

companies with large differences in the spreads including Microsoft.

4.5 Strategy 3: Rank and Hold with Active Holding Periods

This is a variation of strategy 2. In the previous strategy the portfolio remains

static in between the holding periods, hence we are not able to capture and capitalize

on newly evolving spread dynamics and corresponding inefficiencies in the market in

between the (possibly long) holding periods. Here we wish to allow the portfolio to

dynamically evolve even in between the holding periods by having distinct holding and

rebalancing periods. This will allow us to capture opportunities in between the periods

and also have a smoothing effect by compounding a greater number of period-

overlapping portfolios. The holding period is an integer multiple of the rebalancing

period. For each rebalancing interval we continue to form new portfolios by appending

the new top decile items to the existing portfolio. Concurrently we also close out the

positions from the previous holding periods. Thus at any time we may have a portfolio

of items with different dates to expiration which we have to keep track of separately.

As an illustration we again form a portfolio consisting of IBM, Microsoft, HP and

Dell with a holding period of 30 days, but now we have a rebalancing period of 15

days. We still check for convergence daily. Suppose again that Microsoft converges on

day 5, we would then close out Microsoft. On day 15, we rebalance the portfolio. If

Intel and Yahoo have a large difference between theoretical and market rates at that

time, we would add Intel and Yahoo to the portfolio and the portfolio will consist of 5

companies, namely IBM, HP, Dell, Intel and Yahoo. Between day 15 and day 30, no

companies converge and the portfolio remains unchanged. On day 30, IBM and Intel

converge. We then close out IBM and Intel. We also kick out Dell and HP since their

holding periods have expired on day 30. Yahoo remains in the portfolio. On day 30,

we also need to rebalance the portfolio and we will add companies (excluding Dell and

HP) that have large differences in the theoretical and market rates into the portfolio. If

convergence does not occur Yahoo will be killed at day 45.

4.6 Strategy 4: Capture the Momentum

This strategy is a variation of strategy 3. It is the most complex strategy that we



have tested, but thanks to the common infrastructure in place from the previous strategy

the description is simple. Up to now, we have not considered any dynamics, only using

the magnitude of the discrepancies as the selection criteria. But as we will see in the

next section, large discrepancies often become even wider. Here we use a different

ranking criterion - we look at convergent momentum. The basic structure of the strategy

is the same as 3, but at each interval we have a lookback/formation moving window

for which we compute the rate of decrease of the absolute difference of the spreads

(rate of convergence) and rank accordingly.

5. Results

Before testing specific strategies we first plotted the real vs. theoretical CDS rates

to get an idea on what was happening in terms of their relative movement. As expected

some were converging. The following are plots for Eastman Kodak (left) and

Halliburton (right). The vertical and horizontal axes represent the CDS spread and time

(in days) respectively. The market rates are given in blue, while the red plots are the

ones generated by our theoretical model and algorithm explained in previous sections.

<Eastman Kodak> <Halliburton>



Some spreads diverged.

<Dow Chemical> <Sprint Nextel>

Some discrepancies converged and then reopened

<Tyco> <General Motors>

In many cases the discrepancies appeared to be persistent.



(American Electric Power / International Paper)

These examples illuminate the fact that there is unlikely to be a simple methodology by

which we will be able to weed out the "bad" trades. As expected, in the simple

indiscriminate threshold strategy (strategy 1), we end up with a cumulative loss for all

16 input parameter combinations tested. In particular the following are graphs are for

trade activate threshold, stop loss bound, kickout period, and convergence threshold

values of (.01, .02, 90, .0025), and (.02, .05. 30, .005) respectively.

The horizontal axis is in days and the vertical axis is the cumulative P/L in raw US$.

Losses were between US$1M to US2.6M. This strategy is indiscriminate in activating

trades as long as wide enough differences are observed. As we have seen from the

spread plots, this results in taking on too many bad trades that never converge, or to

make matters worse, further diverge. Stop loss becomes the dominant trade and we

steadily accumulate losses as time progresses. As an illustration, for the run with

parameter values of (.01, .02, 90, .0025), examining the internal counters of the

program showed that 448 stop-loss trades were made as opposed to 57 convergence

close-outs.

The following are cumulative P/L results for the second strategy with a holding

period of 30 (left) and 60 (right) days respectively. The flat regions indicate that

frequently no convergence-close outs are made in between holding periods. The jumps

typically occur when positions are cleared at the end of holding periods. The jump for

instance at day 330 for the first combination, occurred when we cleared out 7 positions,

6 of which had significant convergences (but not complete convergences). All 16

different holding periods tested had cumulative profits of $800~$3000, showing that we

were successful in eliminating some of the egregiously bad trades.



For the third strategy, (rebalancing, holding)

(15,45) (10,120)



(50, 150) (40, 160)

The cumulative profit ranges were once again all positive for the 20 combinations tested

but they were not significantly different from those of the previous strategy. Finally for

the fourth strategy that looks at moving windows of convergent momentum we have,

where the left is with 15 day rebalancing, 30 day lookback, and a 60 day holding

period. The right graph is with 15 day rebalancing, 60 day lookback, and a 90 day

holding period. Once again all fall within a cumulative profit range of $1000~$3000.

While it appears as though we almost always make "something out of nothing" for

strategies 2~4, since each position is initiated at zero value and we end up with

cumulative profits for all tests, the numbers are deceiving. In reality we need to assume

that the arbitrageur has a certain level of initial capital deposited in a margin account to

finance the options hedge, to which the profits are added and losses deducted. A full

rate of return and Sharpe ratio analysis is impossible at this point since we do not have

accurate figures on the margin requirements. However even a very basic analysis reveals

that none of these strategies are likely to be "worthwhile". On a $10M notional, if we

consider a 500bp margin analogous to typical IR swap requirements, the annualized

returns from the previous strategies range from 0.1~0.8%. If we take into account the

fact that, on average, we will have around 7 active trades at any given instance, the

most optimistic scenario leads to an annualized rate of return of 0.14% which is clearly

lower than the risk free rate. This is even before transaction costs that will inevitably

be significant due to the frequency of trades and the "implied slippage" due to our

simplifying assumptions in implementing the hedge.



6. Conclusion and Directions for Future Work

In this project we used a model for equity default with non-Gaussian stock

dynamics to compute the equity implied theoretical CDS spreads from which we

constructed and tested 4 different capital structure arbitrage strategies. Starting from a

basic indiscriminate threshold strategy, we applied further refinements to identify trades

that are more likely to converge. The results confirmed the anticipated difficulties in

constructing capital structure arbitrage strategies from both an implementation-wise and

strategic standpoint. From an implementation standpoint, from computing the options

hedge position to backing out our implied default probabilities from the option price

surface, we are in a sense being too taxing on our model. It may be rewarding to fine

tune the model separately for different estimation subtasks, or alternatively to use

different estimators for the subtasks instead of relying on faith in coherence across the

board. From a strategic standpoint, the purpose of testing relatively simple models was

to see if we could come up with robust, systematic, algorithmic ways in which we

could identify and profit from market inefficiencies in the aggregate, in an automated

fashion, instead of having to rely on some latent "trend" variables constituting the

instincts of traders. However our results show that it may be necessary to take a more

in depth look at the dynamics of the spread evolution. One strategy would be to

perhaps look at the volatility differences relative to the current leverage cycle of the

company and to capture cheap volatility in either market by daily gamma trading. With

more interesting strategies, and a clearly defined margin requirement we could compare

the Sharpe ratios with hedge fund industry benchmarks on fixed income arbitrage

strategies. Another promising avenue for further work would be to link the front-end of

the strategies to more complex traditional statistical arbitrage strategies, and check the

constrained mean and time averaged variance to see if they still constitute statistical

arbitrage.
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