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Abstract

It has been empirically observed that buy and sell ordersanynfinancial markets tend to cluster in
time. We develop a formal model to account for such a clusgeeiffect. We consider an exponential
decay Hawkes model, and a more generalized linear modekssiag the goodness of fit and parameter
estimation efficiency of each. Our results indicate thatgemeralized linear Hawkes model is better
suited to modeling high-frequency financial time-serieswhich data is abundant, and fast parameter
estimation is desired. We also use our model in simple tgpsiirategy, which gives promising results.
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Chapter 1: Hawkes Process: Background
Information

1.1 Introduction

Empirically, it has been observed that in many financial rerkrading activity tends to cluster in time.
This is also true when considering “signed” trading acgyivite. buy andsell orders. Liquidity providers
(“market makers”) in the foreign exchange market are wekmnof this clustering, and anecdotal evi-
dence suggests that they pay close attention to the paftarnivals of buy and sell orders when setting
prices.

Such clustering can be modeled with a multivariate pointess([1]. Methods of data analysis for point
processes have received much attention[[2], [3]. In thikwee focus on a model in which order arrivals
are governed by a special class of point process, the Hawkesgs([4]. We first consider the case where
the buy orders and the sell orders are independent of eaeh ath there is only a self-exciting effect
among orders of the same type. A suitable model for thisngetti a univariate Hawkes process. We
then consider the cross-exciting effect among orders &raifit types and the corresponding bi-variate
Hawkes process model.

The propagator function is introduced in the Hawkes model to characterize the efiépiast order ar-
rivals on the future arrival intensities. Exponential ftionos of a sum of exponential functions are well
accepted forms of propagator functions. The advantageeo&tiponential specification is that when
fitting a Hawkes model to empirical market data, the liketiidunction can be computed @(N)
steps, whereas for more general propagator funct@(¥?) steps will be required. However, the model
fitting procedure is still computationally intensive anérh is no single global optimum due to its non-
convexity, even with the exponential functions. In view bfst we introduce a generalized Hawkes
process so the model fitting can be formulated as a convermigiiion problem, to which many effi-
cient optimization algorithms can be applied.

The Wharton Research Data Services (WRDS) provides acocdhs NYSE TAQ database where the
size and frequency of orders can be extracted. We fit vari@vekies models to these market data and
verify the model fitness through statistical measures sathefQQ-plot. The fitted models are then used
in the next section when designing new trading strategies.
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1.2 Exponential Hawkes: Continuous Time

An | —variate Hawkes process focuses on arrival intensitieshiercbunting processéd;(i), 1<i<l.
Arrival intensities)\t(') conditioned on a filtration%; is defined by

W] g jim i)\
M| 7= jm s N N7
In the case of purely self-exciting processes, the intgnsia functional of past arrivals. For a linear
self-exciting process, we have

. . I j
A =045 [ e —uwang.
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Hereu( can be understood as the base intensity of arrivals ofityipe the intensity if there have been
no past arrivals of any type, aigj the propagator of an arrival of tygeonto the intensity of arrivals of
typei in the future. We first consider parameterized formshfdn particular we consider the case where
his a sum of exponentials:

K
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=1
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This specification is labeled ldawkes-E(K) process in[[5]. In this work we consider both univariate
Hawkes proces$l = 1), which models the case where orders are of the same typehartuivariate
Hawkes proces8l = 2), which models the cross-exciting effects among buy andosdérs. For sim-
plicity we assume there is only exponential component ipthagator functioh, i.e. K = 1. Therefore
the univariate case has the form

M=p+ [ aePtudn,

Ju<t
and the bivariate case has the form

PYCIRC / aye Put-wgnY 4 / aype PN |
u<t u<t

At(Z) _ U(2)+/ GZle*ﬁzﬂt*U)leSl)+/ azzefﬁZZ(t*u)lesz).
u<t u<t

1.3 Exponential Hawkes: Discrete Time

The classical continuous model implicitly assumes thaptisbability that more than one event occurs at
exactly the same time approaches 0. In the market data wmebtltom TAQ data base, this is usually
not the case. Since trade data are recorded with time incrtenfid@ second, we do observe many trades
occur at the same time although in reality they may not. Funtiore, even if our data did have a much
higher time resolution, due to market microstructure acts, it is debatable whether it would be useful
to model excitation effects on scales much lower than a skdorview of this, we introduce a Hawkes
process model using discrete time.
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We denote by (i) the conditional expected intensity and Nyi) the number of trades during ttit
time step. Note that in the continuous modklis the counting process up to tinheso we have the
approximation

N(@i) =N —Ni_1.
Note that the continuous process uses subscripts for tidiees while the discrete process puts time
indices into parenthesis. They are not to be confused. Ibittagiate Hawkes model, we use the super-
script (-) to distinguish between the buy and sell processes for agmtim time. In discrete time we
will use the subscript-); for the same purpose. Namely, the notat)qm changes ta\ (t) and similarly
Nt(i) changes td\; (t). With these notations we have for the univariate model

A) = p+ S ae PUEINGD), (1.1)
1<t
and for the bivariate model
At) = mt) apre PROING (i) + > age PNy (i), (1.2)
1<t 1<t
M) = Ho+ Y aze PIEINY() + 5 ae P2ING (i), (1.3)
1<t 1<t

The time steps are=1,2,---, T andN(t) has a Poisson distribution with parameigt).

1.4 Model Fitting: Exponential Hawkes

For the univariate case, the log likelihood function of actdi¢e Hawkes Process is shown to(be [6]
T T
L = — / Acdlt + / log(A)dNk (1.4)
0 0
T T
~ — Y A@)+ Y N(i)log(A(i)) (1.5)
2",

whereA (i) is given by [(1.1). When we fit such a model to market data weadlgtaolve the following
optimization problem

max L (1.6)
subjectto u>0,a>0 1.7)
B>a (1.8)

whereL is given by [(1.5), the constrairit (1.7) is for positivity atie constraint (118) is for stability.

For the bivariate case we also observe that
T

L~ _Zl{Nl(i) I0g(Ax(i)) +Na(i) log(Az(i)) — Ax(i) ~ Az(i) }. (1.9)
=
The corresponding optimization problem has the followioigrf
max L (1.10)
subjectto ;i >0, ajj >0 (2.12)
Bi > aii (1.12)
detll,—¥) >0 (1.13)
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wherel; is the 2x 2 identity matrix,W = (g4j) = (aij/Bij), L is given by [(1.9), the constraint (1]11) is
for positivity and the constraints (1.12) and (1.13) arestaibility.

1.5 Generalized Hawkes Model

Consider the optimization problein (1.6). This is a simplalglavith just three variables, a andf. Yet
the objective function is non-concave in the variables,adot®ns are only local maxima and there is no
guarantee of global optimality. The model also does notescainplexity of the optimization algorithm
grows rapidly with the size of the problem. Furthermore, dipgimization problem[(1.10) generally
involves 10 variables, so it suffers from the same probleranteven higher degree.

The assumption we have made so far is an exponential deceffdaninstead we can consider a time-
limited, piecewise linear form dfij(t). If the duration of each constant pie@#t) is less than the time
resolution of the data, no information is lost. Moreovermp@xentials are themselves “time-limited”,
since they die off after 20-30 seconds. Along these lineseveldp a generalized Hawkes model where
the predicted intensities can be written as

t1 t1
At) =pi+ 5 wir(t—K)Ny(kdt)+ 5 wig(t — k)N (kt), (1.14)
k=t—n k=t—

n

whereh;j(t) consists oh pieces with the-th having valuew;j(t).
The fitting problem can now be cast as a convex optimizatiognam

maximize L

subjectto 1 >¢€, wijj =0
zj = 1—221TWii, zj = 17 wij
. 2
Zi2 & 5722
Z12=21+S,s>0

where the log likelihood function is in the form &f (1.9) willi(t) now replaced by (1.14). The various
constraints correspond to positivity and stationaritye Piecewise linear form dfj; (t) results in many
more variableswj(t), with a typical size of 200. Still it can now be readily solvasl a convex opti-
mization problem using a primal-dual interior point sol¥@rinstance. The algorithm runs much, much
faster and it comes with a global optimality certificate.

It can be shown that this model corresponds to a linear Poissgression with parameter constraints
where the featured\((t)) are past data. Naturally, we can consider using a richesfgg@ossibly non-
linear) features that incorporates other potentially wisgfformation such as such as price, volume,
market index and option data. Since we have very large amafritigh-frequency data, it would be
possible to avoid the overfitting that would normally accamp the introduction of more parameters.
That’s why the ability of our model to handle diverse sourgemformation is a major advantage it has
over the Exponential Hawkes Model.
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Chapter 2: Application of Hawkes Models

We develop a model for trade arrival times, fit empirical datéhe model by calculating parameters, and
test how well the data fits the model. We give preliminary tssan a very simple trading strategy which
shows promising results.

2.1 Trade Data Collection and Processing

We gathered data on several stocks including YHOO, SNDK, MPKOM, MSFT and TIE from NYSE
TAQ database. Our stocks were chosen to span the spectruapitdlization and volatility. Since the
time resolution of the TAQ data is 1 second, we aggregatesbialransaction information in one-second
intervals by calculating the overall number of buy and seltles in the interval. In order to classify
trades into buy and sell, we employed the Lee-Ready tickjTgstve compared the price of the trade
to the price of the trade 5 ticks ago and classified into buyethifsthe trade price was higher or lower,
respectively. In case of a tie, we compared to the next mashtdrade (e.g. 4 ticks ago). It would be
important to explore other methods of trade classificafioriuding using bid/ask information from the
NYSE TAQ database. While recent studies [8] indicate thattitk test performs well for some tasks,
it would still be worthwhile to experiment with other clasation methods, since our model is very
dependent on the qualities of the assigned trade direction.

2.2 Model Fitting

After extracting data from TAQ database and separatingratto buy and sell orders, in Figlre|2.1 and
we plot the most recently frequencies of buy or sell tsam®ditioned on buy or sell trades, respec-
tively. We easily observe a large self-exciting effect arstrell cross-exciting effect, which motivate the
use of Hawkes processes to model order arrivals.

Next, we implemented parameter estimation for a bivariedevkés process considering both the self-
exciting and the cross-exciting effect. We first considetedunivariate Hawkes model using exponen-
tial decays. The prediction of future intensity involves eighted-sum of past trades. We significantly
accelerated the MATLAB code for model parameter estimdiypreplacing an iteration loop with a con-
volution operation. For training data of size up tq @00 the parameter optimization can be completed
in about 35 seconds, which opens the possibility of reagtonline parameter update. The bivariate
Hawkes process with exponential is given[in {1.2) and] (1VBhen predictingA;(t), Ny (t) is the self-
exciting process anll,(t) is the cross-exciting process. A set of typical parametkregis obtained by
optimizing over the trading data of MSFT on January 03, 2007.

H1 = 0.8769 a1 = 0.1689 [311 =0.2470 12 = 0.5542 [312 =10.7996
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Figure 2.1: Conditional arrival intensities following boyders, SanDisk (SNDK) 01/02/07
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Figure 2.2: Conditional arrival intensities following keltlers, SanDisk (SNDK) 01/02/07
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The large exponerf;> implies the marginal effect from cross-exciting processlaserved in[[1]. The
relative small exponerfi; 1 suggests the clustering effect of trades - a large trade isursre likely to be
followed by trades of the same type. Figlre| 2.3 illustratesi Although the intensity prediction hardly
captures the first tic of trade burst, it well predicts theéase of trade intensity that would follow.

Microsoft, 01/03/2007
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Figure 2.3: Intensity Prediction with exponential HawKel§FT 01/03/2007

We can also work with the generalized Hawkes process mode&fl\1 Instead of constraining the
weighted sum of past trades to have exponentially decayiights, we assume the weights are free
variables themselves. It seems that we have dramaticallgased the complexity, since we now have
2n parameters instead of just a handfuladé and 3's. For example, if we want to consider a history
of K = 50 past arrivals we would have 100 variables. However, akimgd before, it is an astonishing
fact that this model is superior to the exponential modelathispeed and fidelity. The reason is simple:
convexity smiles only to this one and turns its back to theoegmtial. Consequently we can get faster
and better results. In Figure 2.4 we plot a sample of the vigightimation from both the exponential
model and the generalized model. The maximum likelihoodathje value is observed to be 33% higher
for the generalized model as compared to the exponentiatmod

Figureg 2.11 and 2.2 show that there is a very small crossieg@ffect between buy and sell orders, and
the model fitting picks up this effect. This phenomenon iseobsd in [1]. Due to the minimal cross-
excitation, we will primarily consider the univariate Haggkmodel and fit two processes to buy and sell
orders separately.

Having calculated the parameters of the Hawkes processeigendine how well those parameters reflect
the data through model validation. In Figlre|2.5 2.6 vaavstine QQ-plot for both the exponential
and the generalized model. It is seen that the Hawkes prooedsls trading data reasonably well. We
know that the Hawkes process becomes a standard Poiss@sgrauder the stochastic time change

t—>/0t)\(s)ds.
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In the discrete case\ (i)/N(i) is approximately the inter-arrival time of the standardsBon process,
which has an exponential distribution. The comparison betwthe empirical cdf of the inter-arrival time
and a standard exponential distribution shows a roughéygdit line. This serves as a validation of the
Hawkes process model.

2.3 Trading Strategy and Performance

2.3.1 Setup

Given that we can predict buy and sell intensities, we attdmpreate some profitable strategies based
upon the Hawkes process model for arrival times. Specijicalk employ the exponential and general-
ized piecewise linear Hawkes processes. Because of theeffinency and increased accuracy of the
generalized process, we use it exclusively unless otherstiaed.

We take our data from the NYSE TAQ Database. Because thesletadrded by second, we discretize
time in seconds, which conveniently allows an applicatibthe generalized piecewise linear Hawkes
process.

In terms of execution, we assume execution at the worst peicerded in the five seconds following

the time of a signal; i.e., we buy for the highest price overniext five seconds and sell for the lowest
price over the next five seconds. We do not impose any addltivansaction costs nor short selling
constraints.
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Due to the efficient maximum likelihood estimation possilolethe generalized piecewise linear model,
we can re-estimate parameters frequently; for the purpok#ss study, however, we estimate them
each day over one day’s data, then apply those parametading the next day. We then use those
parameters to calculate buy and sell intensities at eadmdewer the trading day, using that information
to make trading decisions.

In order to test the model's usefulness, as opposed to thadrmé complex strategy, we experimented
with a very simple trading strategy. We measure performamcdellars earned per single share traded,
limiting the position size to one share long or short. We buy $tock when the buy intensity to sell
intensity ratio is greater than some fixed constangnd sell when the sell intensity to buy intensity ratio
is greater tham. There is no explicit exit strategy, which means that we aay reverse positions when
receiving the opposite signal. In order to mark to marketjigigidate positions at the end of the day.

We calibratedo using a small portion of the sample data, raising it so asitoihte most of the noisy
trade signals, leaving one or two of the highest intensitiyp @pportunities.

2.3.2 Results

Applying this strategy to Microsoft (MSFT) stock using bdtte exponential and generalized Hawkes
processes, we obtain the following results, on averageraeet
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Figure 2.7: Performance for MSFT, 01/03/07-01/11/07

Note how while the generalized process has a similar exgiahelecay of past trades’ effects, it puts
much greater weight on those trades in the last second attaswobserved in Figure 2.4. Consequently,
in times of high activity of one type of trade, that intensiycalculated much higher by the piecewise
linear model, resulting in the need for a higher intensityora in order to eliminate noise trades. We
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then apply the strategy to Titanium Metals Corp. (TIE), aghig exciting results as shown in Figure
[2.8. Withp = 30, the average profit per trade i987 over 86 trades (43 roundturns).
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Figure 2.8: Performance for TIE, 09/01/06-01/11/07

Here are the results for some other stocks showing the awemagdit per share per day over varying
lengths of time:

stock average profit/stock/day number of tradeg period
YHOO $.00565 586 17 0/03/06—01/31/07
SNDK $.00755 36 15 0801/06—12/29/06
VPHM $.01322 14 15 0pB08/06— 03/24/06
XOM $.08152 24 7 01/03/07-01/11/07

Note that Exxon Mobile (XOM) requires a lower threshold @atikely resulting from its high daily
volume; indeed, setting up to even 10 will eliminate all potential trade signals.

2.3.3 Further Improvements

It is possible that this strategy could be improved numergags. We could buy in certain quantities
dependent on the intensity ratio and, therefore, its ptiediaccuracy for the current trend.

Since the current strategy can only reverse positionstahafioses positions when the market has already
turned around, which most certainly reduces profits. We megtlop an explicit exit strategy depending
on intensity, price, time, etc., in order to maximize prdfitidy. Of course, we have the option of placing
this information in the strategy itself or in the calculatiof the intensities, through choosing different
features.
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The high intensity ratio should also be relaxed with bettét strategies. The current strategy only
captures a handful of opportunities every day, but thesm seectually predict longer term trends, or
the strategy could not profit. Probably, an intensity ratiowvee a certain high threshold implies a flurry
of buying or selling that could only occur from some fundataéichange in the underlying (e.g., an
earnings report). Thus, the technical indicator could lbkipg up on investors’ reaction to a fundamental
change. Without an explicit exit strategy, however, theitrg simulation simply gives back too much
profit between trades, and the resulting signals seem ni@adise when viewed under performance.

Given that this nive strategy produces consistent profits under conseetiestimates, the application
of the Hawkes process to model buy and sell orders in tradiagegies seems very promising. Since
the strategy has shown profitable results for many diffekertts of stocks, future improvements upon it
should have reasonable scaling capacity among a variegcafisies.
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