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Volatility of stock returns

Let y be the return on a stock. Then the instantaneous volatility is
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assuming the changes in returns are multiples of some small € > 0. Here
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1s the intensity of the counting process /N, which counts the number of
jumps of y exceeding some fixed threshold Ay.

For convenience we call AgAy) the volatensity.
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Volatensity is a proxy for volatility

This can be seen, for example, by comparing it with the GARCH(1,1) fitted
to the return series!, which is a very common representation of volatility.

Intraday volatility (conditional standard deviation) from GARCH(1,1) model
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Intraday intensity—based volatility (average # events per hour) for every day
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1. This and following based on TAQ data for IBM stock on 1/05/2007




Our model for volatensity
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and 7; is the time of the :th jump.
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Reproducing stylized features of volatensity

Slowly decaying autocorrelation:

log of Absolute Sample Autocorrelation Function vs log(lag)
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regression line
(slope = -1.07, R—squared = 0.83)
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Reproducing stylized features of volatensity

Volatensity bursts:
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Why do we need the two terms?

ACD part

Hawkes part

self-exciting

slow autocorrelation decay

power-law decay of intensity between jumps

suitability for intraday modelling

ease of simulation

feasibility of calibration




Calibrating the intraday volatensity model

1. Cleaning and converting the data:

e deleting trades outside the standard trading hours,

e averaging the trade price in single time points,

e determining the counting process based on a fixed threshold.
2. HEstimating model parameters using a two-step procedure:

e least-squares fitting of the intensity curve to obtain a starting
point,

e MLE estimation using the starting point.

3. Statistical goodness-of-fit tests for time-changed interarrival times,
which should be independent exponentials (Meyer 1971):

e mean/variance,
e Ljung-Box test,
i Q_Q p]-Ota

e Kolmogorov-Smirnov Test.



Historical vs. fitted volatensity
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Statistical tests & forecasting

Q-Q Plot Empirical CDF vs. Theoritical CDF +/- 5% K-S interval
12 T T T 1.2 T T T T T T T T T
101 o
81 7 i R
%) PR
Q P
= g =
L A+ | X
g ° + A g
g A
4 %5&,47#:# -
2t g g
O L L L L L L L L L 702 Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
X Quantiles X

Estimated / Forecasted Volatensity
800 T T T T T

For time-changed interarrival times:
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e sample mean = 1.00

e sample variance = 1.15
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e Ljung-Box test (with lags 10-80)
accepts the null hypothesis that

Volatensity [per hour]

200~

100

the model fit is adequate

10



Conclusions and future work

e We have succeeded in incorporating in our model most of the stylized
features of volatility: clustering, slow decay of autocorellation, and
power-law decay after a jump.

e This is an intraday model, but it can be extended to a multiday one.

e One way to achieve this is using the so-called ‘seasonality functions’
to take into account the fact that trading patterns exhibit similarity
across different days.

e Another way is to regard the parameters of our model as a realization
of a daily time-series and then fitting a model to it (e.g. ARMA).

e Both of those would allow us to make a forecast several days into the
future and thus develop a trading strategy.
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