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Volatility of stock returnsLet y be the return on a stock. Then the instantaneous volatility is

σt
2 = lim

∆t→0

1

∆t
E

{

(y(t + ∆t)− y(t))2
∣

∣Ft

}
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∆t→0
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∆t

∫

0
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P
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(y(t + ∆t)− y(t))2 > α
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∣Ft
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dα
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∆t→0
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∆t

∑

k=1

K

P {|y(t + ∆t)− y(t)|> k ε|Ft}C(k, ε)

=
∑

k=1

K

λt
(kε)

C(k, ε)

assuming the changes in returns are multiples of some small ε > 0. Here

λt
(∆y) = lim

∆t→0

1

∆t
P {N(t + ∆t)−N(t)> 0 | Ft}is the intensity of the counting process N , which counts the number ofjumps of y exceeding some �xed threshold ∆y.For convenience we call λt

(∆y) the volatensity.2



Volatensity is a proxy for volatilityThis can be seen, for example, by comparing it with the GARCH(1,1) �ttedto the return series1, which is a very common representation of volatility.
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1. This and following based on TAQ data for IBM stock on 1/05/20073



Our model for volatensity

λt = λ∞(Nt)�ACD part+
∫

0

t

g(t− s)dNs�Hawkes partwhere

λ∞(n)−1 = C +
∑

i=1

m

αi (Tn−i −Tn−i−1) +
∑

j=1

q

βj λ∞(n− j)−1,

and Ti is the time of the ith jump.We take g to be equal to

ggeneral(x)=
1

∑

l=0
L cl xl

or gspecial(x)=
a

(b + x)c
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Reproducing stylized features of volatensitySlowly decaying autocorrelation:
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Reproducing stylized features of volatensityVolatensity bursts:
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Why do we need the two terms?

ACD part Hawkes part

self-exciting • •slow autocorrelation decay •power-law decay of intensity between jumps •suitability for intraday modelling • •ease of simulation • •

feasibility of calibration • •
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Calibrating the intraday volatensity model
1. Cleaning and converting the data:

• deleting trades outside the standard trading hours,

• averaging the trade price in single time points,

• determining the counting process based on a �xed threshold.2. Estimating model parameters using a two-step procedure:

• least-squares �tting of the intensity curve to obtain a startingpoint,
• MLE estimation using the starting point.3. Statistical goodness-of-�t tests for time-changed interarrival times,which should be independent exponentials (Meyer 1971):

• mean/variance,

• Ljung-Box test,

• Q-Q plot,

• Kolmogorov-Smirnov Test.
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Historical vs. fitted volatensity
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Statistical tests & forecasting
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Estimated / Forecasted Volatensity For time-changed interarrival times:

• sample mean = 1.00
• sample variance = 1.15
• Ljung-Box test (with lags 10�80)accepts the null hypothesis thatthe model �t is adequate
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Conclusions and future work

• We have succeeded in incorporating in our model most of the stylizedfeatures of volatility: clustering, slow decay of autocorellation, andpower-law decay after a jump.

• This is an intraday model, but it can be extended to a multiday one.

• One way to achieve this is using the so-called `seasonality functions'to take into account the fact that trading patterns exhibit similarityacross di�erent days.
• Another way is to regard the parameters of our model as a realizationof a daily time-series and then �tting a model to it (e.g. ARMA).

• Both of those would allow us to make a forecast several days into thefuture and thus develop a trading strategy.
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