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On Lewis’ Simulation Method 
for Point Processes 

YOSIHIKO OGATA 

Abstract-A simple and efficient method of simulation is discwsed for 
point processes that are specified by their conditional intensities. Tbe 
metbud is based on tbe thinning algorithm which was introduced recently 
by Lewis and Shedler for the simulation of nonhomogeneous Poisson 
pmcesses. Algorithms are given for past dependent point processes con- 
tain@ multivariate processes. The simulations are performed for some 
parametric conditional intensity functions, and the accuracy of tbe sbnu- 
lated data is demonstrated by the liieliiood ratio test aud the minbuum 
Akaiie information criterion (AK) procedure. 

I. INTRODUCTION 

A NY point process (N,, 4, P) on a finite interval 
(0, T] is a submartingale and therefore by the 

Doob-Meyer decomposition may be written as N, =mt + 
A,, where m, is an (F,, P) martingale and A, is the natural 
increasing process. It is known that there is a predictable 
process (A,, F,), such that A, = jdh, ds, if and only if P is 
absolutely continuous with respect to the standard Pois- 
son process PO; furthermore A= {X,, 0 <t < T} corre- 
sponds uniquely to the process P, and the Radon- 
Nikodym derivative is given by 

‘logh,dN, +/‘(l -X,)dt). 
0 
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Similar results hold for multivariate or marked point 
processes [7], [8]. 

The main object of this paper is to discuss the applica- 
tions of Lewis’ thinning simulation algorithm to any point 
process which is absolutely continuous with respect to the 
standard Poisson process. Recently Ozaki [ll] generated 
simulation data for Hawkes’ self-exciting processes by 
making use of a recursive structure. However his method 
is not fast enough unless the process has a simple struc- 
ture, because given a past history of the process 
t,, t,; . * 7 t, and a uniform random number U,, i from the 
interval (0, l), we have to solve the equation U,, i = 
S(tn+*ltl,.-*, t,) by Newton’s iterative method to get the 
next point tn+l, where S is the conditional survivor func- 
tion 

qt/t,;.* ,tn)=exp - 
1 J 

‘X(slt,; . . , t,)ds . 
f” I 

We do not need to solve this equation to get the next 
point. The idea of simulating these point processes by 
thinning is developed using algorithms due to Lewis and 
Shedler [9] for the simulation of nonhomogeneous Poisson 
processes. 

In Section II we give the simulation method and a 
proof for past dependent point processes containing mul- 
tivariate processes. Some typical algorithms also will be 
given. In Section III we give some examples of parametric 
intensity functions for the simulation and obtain their 
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maximum-likelihood estimates from the simulated data. Proof Define a random measure for the finite marked 
The accuracy of the simulated data will be discussed by, process (using the notation in [7]) by 
the likelihood ratio test or the minimum Akaike informa- 
tion criterion (AIC) procedure. Numerical results are given 

M(dt, p)=N*(dt)Z(t, p), p=l;*-,m, 

in the Appendix. where Z(t, p) is the transition random measure of the 
marks under the condition that there is a point at t. As a 

II. SIMULATION OF POINT PROCESSES 

Consider a point process (N, F, P) = {N,, I;;, 0 < t < 
T, P} on a fixed interval with its F-predictable intensity 
process X= {A,}, where F= {e} is a family of right con- 
tinuously increasing u-fields. Suppose we obtain a positive 
F-predictable piecewise constant process A* = {A:} which 
is constructed pathwise in such a way that X, < XT, almost 
surely (a.s.), O< t < T. Then X* can be an intensity process 
of a locally homogeneous Poisson process (N*, F, P)= 
{ NF, F,, P} with piecewise constant intensity changing its 
rate according to the past history 4. The main result, 
which is formally similar to the one given in [9], is as 
follows. 

Let t:<t,*<;.-,<t& be the points in (0, T] of the 
process (N*; F, P). Delete the points t; with probability 
1 -h,,/Xt forj= 1,2;. . , N;. Then the remaining points 
{ ti} form a point process (N, F, P) with conditional inten- 
sity X= {A,} in the interval (0, T]. 

It is readily seen from the predictability of X* that the 
constructions of A*, t;, and ti should be performed 
sequentially in the following manner. 

1) Suppose that the last point before time t has just 
been obtained. Then construct AT which is 41-measurable, 
piecewise constant, and A: > A,, for t > ti. 

2) Simulate homogeneous Poisson points t,T( > ti) 
according to the intensity X:. 

3) For each of the points {t;}, the probability XtY/h; 
is given conditionally independent of ty under the past 
history J$. 

4) ti+, is the first accepted point among t; (> ti). 
Details of the algorithm will be given later. By gener- 

alizing this result to a multivariate point process, we have 
the following proposition. 

Proposition I: Consider a multivariate point process 
(Np, F, P),p=1,2;.., m, on an interval (0, T] with joint 
intensity (X, F) = {AT, F,}, p= 1; . . , m. Suppose we can 
find a one-dimensional F-predictable process AT which is 
defined pathwise satisfying 

p=l 

P-almost surely, and set 

A”=+ 5 x;. 
p=l 

Let t:, t2*; . . , t& ~(0, T] be the points of the process 
(N*, F, P) with intensity process A:. For each of the 
points, attach a mark p =O, 1,. * . , m with probability 
x$/A:.. Then the points with marks p= 1,2,. . . , m, pro- 
vide a’multivariate point process which is the same as that 
given above. 

result of the conditions of the proposition, Z(t, p) has the 
following properties. 

i) Z(t, 4)=8,(q) with probability X:/AT for p, q= 
0,1,2; - * ) m, where 6,(q) is a Dirac delta function. 

ii) For fixed t,N*(dt) and {Z(t,p),p=O,l;--,m} are 
conditionally independent given F,. 

Then for each mark p = 1,2,. * *, m, the intensity mea- 
sure of the marked point process is given by 

G,p)=E[ Wdt,p)lF,] 

=E[ N*(dt)Z(t,p)lf;;] 

=E[N*(dt)lE;]E[Z(t,p)lF,]. 

By definition 

E[ N*( dt)l F,] =X: dt, 

and also 

E[Z(t,p)ll;;]=l.P{Z(t,p)=1IF,} 

+O*P{z(t,p)=o~F,} 

= q/A:. 

Therefore for each p = 1,2, * . * , m, we get v( dt, p) = AT dt. 
Since the predictable random measure corresponds 
uniquely to the multivariate process (see [7], [S]), this 
completes the proof. Cl 

We now give some typical algorithms based on this 
proposition. 

Algorithm I: A bivariate (doubly) Poisson process with 
intensity process {X:(w), q}, p= 1,2. 

1) Obtain a path function of the process w,(t) =X:(w), 
O<t< T,p= 1,2. 

2) Take a piecewise constant function o*(t) such that 
o,(t) + w2( t) < w*(t). For efficiency of simulation we 
should take w*(t) as close as possible to w,(t) + w2( t). 

3) Simulate stationary Poisson processes for each inter- 
val of constant intensity. Denote the points by 
t;, t;; * * ) t;,. 

4) Set k= 1, i=O, andj=O. 
5) Independently generate a uniform random number 

U, on (0,l). 
6) If U, < ol(t: )/w*(t: ), set i equal to i + 1 and t,?) = 

t* 
7) Ii’U, < {r.o,(tk*)+cd2(tk*)}/cd*(tk*), setj equal to j+ 1 

and t!‘) =tz. 
8) Set k’equal to k+ 1. If Ng <k, then stop. Otherwise 

go to step 5. 

Consider the case of a univariate self-exciting process. 
Since E;; = a{N,, 0 <s < t}, the intensity of the process is 
given by a function of t and the points ti before t, i.e. 
A, =A(tlt,; - * , t,). There are two types of intensity 
processes. 
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Consider first the case where the path function of the 
intensity process is decreasing if no more points occur. 
The predictability of h, implies left-continuity of the path 
functions. We assume that the minimum value of the 
intensity function is p, the jump size at each point is not 
larger than cy, and the AT are values, of the piecewise 
constant function such that h(t It,, * . . , t,) < AT for t, < 
si < t<s,+, =G t,,,. 

Algorithm 2: 

1) 
2) 
3) 
4) 
5) 

6) 
7) 
8) 
9) 

10) 

11) 

If 

Set A*, = y and put s,, = 0. 
Generate U, and put uo = -log(U,/&). 
If ua < T then put t, =~a. Otherwise stop. 
Set i=j=k=O and n= 1. 
Set k equal to k+l and put A;=X(tn(t,;.., tnpl) 
+a. 
Set j equal to j+ 1 and generate q. 
Set i equal to i+ 1 and put ui = -log(q/A*,). 
Put si =si- i + ui. If si > T, stop. 
Set j equal to j + 1, and generate q. 
If q <h(siIt,;.-, tnel)/Ai, set n equal to n+ 1, 
put t, =si and go to step 5. 
Set k equal to k+ 1, put A: =h(siItl;. . , t,-,) and 
go to step 6. 

a sample function of the intensity function 
A(tlt,; * * , t,,) is not always decreasing but only has a 
decreasing tail, then we can define a process 
h**(tlt,; * * , t,) which is always decreasing and satisfies 
A(tlt,; * * ,tn)<h**(tItl;**, t,) for t, < t (see Example 
1). Replace A(t,Jt,;-*,t,-,) with A**(t,lt,,~~~,t,-l) in 
step 5 and X(s,lt,; * *, t,-,) with X**(silt,; * +, t,-,) in 
step 11. Then we obtain a point process with intensity A, 
by using the modified Algorithm 2. 

Assume now that the intensity function X,(w) = 
h(tlt,;** , t,) is monotonically increasing if no more 
points occur. In the following algorithm, the interval (0, T] 
is divided equally into subintervals (kr, (k + l)r], for some 
appropriate choice of the length r. 

Algorithm 3: 

1) 
2) 
3) 

4) 

5) 

6) 
7) 

8) 
9) 

10) 
11) 
12) 

Set i=n= 1. 
Put At =h((i+ l)r]t,; . *, t,). 
Generate a homogeneous Poisson process with in- 
tensity Xl on the interval (kr, (k+ l)r]. 
If the number of the points on the interval, say NT, 
is zero, go to step 11. 
Denote the ordered points on the interval (ir,(i+ 
l)r] by s;, s;; . . , s&. 
Set j= 1. 
Generate q uniformly distributed between zero 
and one. 
If q>A(si*It,,-*, t,)/hT, go to step 7. 
Put t, =sT and set n equal to n + 1. 
Set j equal to j+ 1. If j<qi* go to step 7. 
Set i equal to i+ 1. If (i+ l)r< T go to step 2. 
stop. 
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Thus t,, t,; . . are the data which are required. It is 
recommended for numerical accuracy in step 4 to adopt a 
method which generates a Poisson random number Ni* 
and then uniform random numbers from (ir, (i + l)] 
according to Ni*. 

If x, =A,(tlt,; . * , t,) is only eventually increasing (if 
no more points occur), a modification similar to that for 
Algorithm 2 is possible. That is to say, construct a func- 
tion X**(tltl;. . , t,) which is increasing in (ir, (i + l)r], 
andsatisfiesA(tIt,;..,t,)<X**(tIt,;..,t,)forir<t~(i 
+ 1)r. Then change step 2 of Algorithm 2 to 

2**h: =h**((i+ l)rlt,; . . , t,). 

It is not difficult to construct simulation algorithms for 
multivariate mutually exciting point processes, or mixed 
doubly Poisson and self-exciting point processes from the 
above algorithms. 

III. SOME EXAMPLES AND DISCUSSIONS 

Hawkes’ Self-Exciting Process 

The intensity function is given by 

h(t)=A(tlt,,--.,t,)=p+ ‘v(t-s)dN(s), s 0 

where p>O, V(S) > 0, and /,“v(s)ds< 1 for asymptotic 
stationarity of the process. Hawkes and Oakes [5] first 
gave the author the idea that this process may be simu- 
lated through nonhomogeneous Poisson processes. Indeed 
they say that a Hawkes’ self-exciting process is nothing 
but an immigrant-birth process which is composed of an 
homogeneous Poisson immigrant with rate p and nonho- 
mogeneous Poisson descendants with rate Y(S). 

As a parametrization of Y(S), Hawkes [4] used an 
exponential Y(s)=(Y~ -ps. In this case we can apply Algo- 
rithm 2 for the simulation. Ozaki and Akaike [12] sug- 
gested a generalized parametrization Y(S) = Z:ip_aofisie -ss, 
where the (Y and p (> 0) are restricted to satisfy Y(S) > 0 
and Jfpo~(s) L!+s< 1. This is a decreasing function for suffi- 
ciently large s. Thus we have a function Y**(S) which is 
always decreasing and Y(S) Q V**(S) for s > 0, say v**(s)= 
Z$‘eoaT max { (j//?)je -j* lJo,j,pl, sje -p”} where (Y? = 
rnax(oti, 0). Therefore making use of a predictable i&en- 
sity h**(s)=p+Jdv**(s)dN(s), where N(s) is the point 
process generated by the intensity function A( t ) = p + $v( t 
-s)dN(s), the modified Algorithm 2 can be applied for 
the simulation. The jump size for this case is 
Xip_oa,? (j//?)je -j. 

Suppose t,, t,; . . , t, in (0, T] are the simulated data. 
Then the log-likelihood function is given by 

Ma,,*. * 3 C$,/3)= i log /.l+ 5 ajRj(i) 
i=l ( j=O 1 

-yT- i i ocjSj(T-ti), 
i= 1 j=O 
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where Rj(i) and Sj(t) are given recursively in the follow- intensity function 
ing way. X(t)=e a+pt--yN(/-) 

Set t, =O, R,(l)=O, &,(t)=(l -evP’)//3, and Ak(t)= 
3 where N(t-)=N[ 0, t), 

tkeBP’.Thenforj=0,1,2,..., andi=2,3;.., (A similar process is discussed by Isham and Westcott 

i [6].) This is asymptotically stationary with a mean inten- 

Rj(i)=Aj(ti-tie,)+ i jCkAj-k(ti-ti-,)Rk(i-l), sity rate y//3. Although this process is obtained by the 
k=O simple relation 

and t fl+1 
$+1(t)= {(j+ l>+(t)-Aj+I(t)}/P, 

=t,+~log{l-/iE”~8t~+y”~log~~+i}, 

where jCk denotes a binomial coefficient. 
we apply Algorithm 3 for the simulation. 

The gradient vector and Hessian matrix of the log- 
Given simulated data t,, t,; * * , t, on the interval (0, T], 

likelihood function also be written recursively using the 
we have the log-likelihood function (setting to =0 and 

above function. It is worth noting that the simulation is 
t 
n+I =T) 

much faster if we make use of the recursive structure of 
the intensity function X( t I t,, * . * , t,), that is, 

L*(%P,Y)= i lO?Z{~+Pt;-Y(i-1)) 
i=l 

n+l 
X(fn+*ltl,- * * ) tn)=/.L+ i ajRj(n+ 1). 

j=O 

+ C ,a-y(i-1). {ePt,-, -eStt}/pe 
i=l 

Linear Wold Process 

The intensity function is given by 

X(t)=p+a,(t-t(,))+ i ak(t(k-l)-t(k)), 
k=2 

where p and (Y are nonnegative parameters and t(,) is the 
kth last point before t. A point process with this intensity 
is always asymptotically stationary (see [3]). It is easily 
seen that this point process may be simulated by the 
simple relation 

t PI+1 =tn + -J-( -p, +(Pn’ -2@%K+*)*‘2)~ 

where & =p+&&(tn-k+2 -t,,-k+i) and U,,, is a 
uniform random number from (0,l). However, we would 
like to apply the modified version of Algorithm 3, setting 

A**(tlt*;. * 9 tn)=pL+ oT?:kai(t-t(k))* 
I 

Suppose t,, t,; . . , t, are the simulation data on the inter- 
val (0, T]. Then setting to =0 and tn+I = T, the log- 
likelihood function is given by 

L&b a,,-. ’ 7 olp)= $ log p+ f: ak(ti-k+l-ti-k) 
i=l i k=l I 

n+l 

-IT- ~ a,(t;-t;-1)2/2 

i=l i 

’ ~ ‘Yk(fj-fi-I)(fj-k+I-fj-k) 1 

k=2 I 

One of the nice properties of this model is that the 
Hessian matrix of the log-likelihood function is negative- 
definite everywhere with respect to the parameters (see 
[lo, p. 2551 for example). 

Stress-Release Process 

Vere-Jones [ 141 has suggested models for a series of 
strong earthquakes. One of these models is defined by the 

Nonlinear Hawkes’ Type Point Process 

Consider an intensity function of the form 

+ %(t-s,s-u)dN(s)dN(u), 

where p > 0, v(s) > 0, and ~T(s, /.L) > 0. It is necessary for 
asymptotic stationarity that 

v+q) < 1, and (1 -~-~0)2>47r(y+7r~), 

where 

I 

cc 
v= v(s) ds, 

0 
s 00 

770 = p(s,O) ds, 
0 

Q) 
77= 

SJ 

00 
r(s, u)dsdu, 

0 0 
a, GO 

77c = ss r(s, u)C(u)&du. 
0 0 

(C(u) is the autocovariance of the process). Unfortunately 
we can evaluate neither rc nor C(u). We can only hypo- 
thesize the domain. For example, the noise level p of the 
Poisson must be small enough for asymptotic stationarity. 

A parametric example of v(s) and ~T(s, EL) is 

v(s)=aeMps T(S, u)=ye-P(s+u). 

Algorithm 2 is applicable to this case. Suppose we obtain 
simulation data t,, t,; . . , t, on the interval (0, T]. Then 
the log-likelihood function is 

LAP,~,P,Y)= 5 log{y+aR,(i)+yR,(l)}-~T 
i=l 

- ; ;gl { 1 -e-P(T-ti’} 

- $ ii1 { 1 -e-P(T-t~)}R2(i), 
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where R,(i), R2(i), and R3(i) are given recursively by 

R,(l)=O, R,(l)=l, R3(i)=0, 

R,(i)=e -p(‘,--l,~l).{R,(i-l)+l}, 

R,(i)=e -P(f,-t,-l).R2(i-l)+l, 

R,(i)=e-P(‘i-ti-l). {R2(i- l)+R,(i- I)}. 

The gradient and Hessian are given similarly. It is worth 
noting that the simulation is much faster if we make use 
of the recursive structure. 

Bivariate Wold Process 

The intensity functions are given by 

I Ii1 A,(t) Pl + 

h2(t) = Y2 
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where vij(s) > 0. For asymptotic stationarity it is neces- 
sary that the moduli of all eigenvalues of the matrix {rij} 
are less than one, where vii = Jomvij(s)ds. Parametrizing 
the functions vii(s) = aije -fins, we can simulate the data in 
accordance with Algorithms 1 and 2. For data {ti’)}, 
i= 1,2,. . . , n, and {ty)}, j= 1,2; * * , m, the log-likelihood 
of the model is 

LT(~l,~2,P*,P2,~,1,~,2~~2*~~22) 

=J%%IJ*~%? 12 0. )+L(T2)(~2,P2~~2*,~22), 

w&31~%~12) 

= i loi& +“11R,,(i)+a,,R,,(i)) 
i=2 

eplT- ?/ ,$ { 1 -e --P,(T--l?)} 

lr 1 

The coefficients must be nonnegative for asymptotic 
stationarity if y, and p2 are strictly positive. If p, = 0, or 
p2 =O, then there are explosive cases even if the other 
coefficients are nonnegative. For example, consider the 
simplest casep=l. If pi>O, p2 =O, (Y,=O, Ri>O, y,>O, 
and S, =O, we have an explosive process. 

Consider an asymptotically stationary case with p = 1. 
Let {t!‘)}, i= 1,2;. . , n, and {ty)}, j=1,2;**, m, be the 
data f;om the model. Then the log-likelihood function is 
given by 

&411.,,11.2,~ P Y’ q=L$)(Pl>~ P>+L$)(Pz,YA > > > 2 2 

L$)= i: log{~l+cu(t~l~-t~?I)+~(tj”-t{~~)) 
i= I 

i=l 

-+ (ti’2’ - tj?J2/2, 

L’lf’= 2 log{~2+y(t~)-t~;;)+6(t,(2)-tj2_)l)} 
j=l 

-y,T-6 2 (t~+?,)2,2-y~~l(t,=t~~~), 
j=l 

where $1 is the last point on the line tc2) before tl’), t{;i is 
the last point on the line t(‘) before t>2), and t$/) = ts) = 0. 
Notice that the minimization of L, is equivalent to the 
separate minimizations of L$) and LF), provided the 
parameters are independent. 

The simulation is performed using Algorithm 1 and the 
modified version of Algorithm 3. 

Bivariate Hawkes’ Mutually Exciting Process [ 41 

The intensity functions are given by 

h(t)=pl +~tv,l(t-s)dN,(s)+~tv,,(t-s)dN2(s), 

b(t)=y, +~rvz,(t-s)dN,(s)+~tu,,(t-s)d~(s), 

w(P2J2~~21~~22) 

= 5 lo&, +~21R21(j)+a22R22(j)} 

j=2 

-p2T- !$i $ { 1 -,-&(-!I))) 
2J 1 

- 2 jgl { 1 -e-P2PtjZ9}, 

where the R,, are given recursively by 

R,,(l)=R,,(l)=R,,(l)=R,2(1)=0, 

R,I(i)=e-P*(rl”-t!“l). { l+R,,(i- I)}, 

R12(1)=e-P~(t(“-t,‘“l).R,,(i- 1) 

+ 22 
e -&(t;” -?j2’) 

2 
{ j: t!?, =G tj*) < 11’)) 

R2dj)=e 
-P2(t~‘--I!Z_)I).RZ1( j- 1) 

+ 2 
e -p*(q) -I(‘)) 

3 

{i: tj22, < tj’)<f)) 

and 

R,,( j)=e-P2(tY-tJ2_'l)- { 1 +R,,( j- I)}. 

The ‘gradients vector and Hessian matrix are given simi- 
larly by a recursive formula. Also the simulation algo- 
rithm should be performed recursively for the greatest 
efficiency. 

IV. CONCLUDING REMARKS 

In this section we discuss whether the simulation data 
are statistically accurate enough in each case. In [lo] a 
collection of regularity conditions is given to prove the 
following. 

1) The maximum likelihood estimator is consistent, i.e., 
l&.+0, a.s. as T+w. 
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2) ?T(&-8,) is asymptotically normal according to statistic A(fZ,,, 8,) is given by 
%(O, I( 6$)-‘) as T-+cQ, where the components of Fisher’s 
mean-rate information matrix are given by I,,(/&) = A(8,,,Z&)=AIC,-AIC,+2k, 

E{(l/hS)(d?ldei>(dh/dei))B=B,’ which is asymptotically x:-distributed. See [13] for an 
3) w-v) - wm is asymptotically xi-distributed extensive discussion of the relation between the minimum 

as T+m, where k is the dimension of the parameter 8. AIC procedure and the likelihood ratio test. 
The examples in the preceding section basically satisfy Using physically generated random numbers we per- 

these conditions, although the multivariate case is not formed simulation experiments five times for each exam- 
treated there. So the adoption of the minimum AIC proce- ple. The maximum-likelihood estimates and the negatives 
dure [l] is justified. That is to say, we consider two of the log-likelihoods are listed in the tables in the Ap- 
competing models ZZ, and Hi, where ZZ,, is the model pendix. We used the Davidon-Flecher-Powell method 
supposed to have the true parameter t9,, and H, is any for the nonlinear optimization. From the tables we can see 
other model with a fixed dimension k of the parameter 0. that the maximum-likelihood estimates get more accurate 
The values of the AIC for the two models are as the sample size (number of points) or the length of the 

AIC, = ( - 2)(value of log-likelihood at 0,)) observed interval increases. Also for each sample size 

since the number of unknown parameters in Ho is zero, 
interval length, the AIC and log-likelihood ratio tests 

and 
work well and justify the accuracy of the simulations. 
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APPENDIX 

TABLE1 
Hawkes’ self-exciting process 

A(l)=p+Sof{(ae+~,(#-s)+olz(f--s)Z}e-P(r-s)~~(s), 

where 

(a,ya,)=( o.700~1~100 ). 
0.045, -0.300,0.500 

Numbers of 
Data 

n=500 

n=50000 26 376.292 26374.593 

- Log(Likelihood) 
at the True 
Parameter 

218.895 

- Log(Maximum 
of Likelihood) 

216.715 

214.112 

308.358 

213.181 
/ 

307.341 

368.521 365.038 

292.764 289.974 

26 104.488 26099.494 

25925.125 25922.638 

25 835.985 25 832.676 

25 574.279 25570.103 

Maximum Likelihood Estimates 

0.816 0.970 
-0.136 -0.161 0.382 

0.760 1.125 
0.113 -0.427 0.570 

0.794 1.234 
0.089 - 0.288 0.531 

0.923 1.213 
0.030 -0.412 0.487 

0.540 1.095 
0.257 - 0.434 0.494 

0.721 1.115 
0.032 -0.305 0.520 

0.716 1.099 
0.045 -0.378 0.539 

0.707 1.134 
0.040 -0.344 0.567 

0.724 1.108 
0.056 -0.361 0.532 

0.715 1.107 
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TABLE II 
Linear Wold process 

X(t)=EL+a(t-t(,))+P(t(,)-t(~))+Y(t(~)-t())), 

where 

- Log(Likelihood 
Number of at the true - Log(Maximum 

Data Parameter) of Likelihood) Maximum Likelihood Estimates 

n=500 - 158.717 - 160.946 1.637 1.505 3.459 3.273 
- 178.251 - 179.852 2.540 1.067 2.624 1.814 
- 165.349 - 167.672 2.192 0.529 2.874 3.075 
- 199.151 - 203.298 1.418 3.049 3.490 4.649 
- 190.100 - 190.534 1.750 1.861 4.632 2.726 

n=50000 - 18794.831 - 18796.546 2.008 1.386 3.792 2.802 
- 18862.763 - 18865.039 1.944 1.474 3.932 2.863 
- 18655.569 - 18656.813 2.002 1.458 3.797 2.680 
- 18664.021 - 18664.801 2.005 1.426 3.806 2.695 
- 18766.239 - 18767.236 1.978 1.358 3.953 2.785 

TABLE III 
Stress-release process 

A(t)=e a+@-yAy0.t) 

where 

(a,P, y)=(3.000,2.000,1.000). 

- Log(Likelihood) 
Number of at the True - Log(Maximum 

Data Parameter of Likelihood) Maximum Likelihood Estimates 

n=500 4.318 4.012 2.957 1.844 0.924 
4.419 2.621 2.662 2.002 0.995 
5.513 4.530 2.855 1.808 0.906 

-3.353 - 4.842 3.374 2.529 1.262 
7.023 5.656 2.678 1.641 0.820 

a=50000 621.435 619.599 2.993 2.017 1.009 
623.923 623.372 2.994 2.007 1.004 
580.052 578.178 3.024 2.046 1.023 
583.369 581.362 3.014 2.041 1.021 
63 1.726 629.010 3.003 2.007 1.004 

TABLE IV 
A Hawkes’ type nonlinear process 

A(t)=p+lolae-B(1-.)dN(s)+loflolye-B(~-u)dN(s)dN(u), 

where 

(p,a,/-l,y)=(0.550,0.850,4.750,0.350). 

- Log(Likelihood 
Number of at the True - Log(Maximum 

Data Parameter) of Likelihood) Maximum Likelihood Estimates 
I 1 I 

n=500 59 1.036 590.325 0.564 0.476 5.682 0.677 
458.429 452.586 0.677 0.507 6.166 0.859 
543.007 
548.165 
561.440 -I-- n=50000 56 876.433 

56632.821 
56383.413 
56 524.242 
56 708.677 

5.106 0.149 
3.355 -0.083 
6.998 0.226 

4.758 
4.669 
4.791 
4.916 
4.653 

0.372 
0.338 
0.372 
0.347 
0.260 
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TABLE V 

X,(t)-2.300+10.100(r-tt#+4.5OO(r-rfi]), 

Length of 
the Interval 

and Numbers 
of .Data 

T= 100 
n(‘)+500 

n(Z) +=300 

T= 2500 
n”)+125OB 

n(2) t7500 

- Log(Likelihood) 
at the True 
Parameter 

-424.386 

- Log(Maximum 
of Likelihood) 

- 425.352 

- 434.336 -437.251 

-450.781 - 454.897 

-424.451 - 427.822 

- 42 1.424 -422.401 

- 10568.720 - 10573.727 

- 10373.444 - 10378.002 

- 10426.732 - 10429.884 

- 10549.615 - 10558.059 

- 10517.033 - 10523.479 

&ximum Likelihood Estimates 

2.620 10.168 3.306 
-0.064 8.788 6.878 

2.889 10.262 3.377 
0.174 7.485 5.757 

2.469 10.85 1 
-0.134 6.339 

2.151 10.792 
-0.621 8.884 

2.231 10.475 
0.112 6.383 

2.216 10.618 
0.032 8.083 

4.813 
8.894 

5.143 
7.815 

5.120 
6.936 

4.710 
6.917 

2.130 10.465 4.875 
- 0.083 8.156 7.096 

2.223 10.153 4.736 
-0.042 8.191 7.080 

2.193 10.817 4.738 
0.026 7.866 6.808 

2.084 10.565 5.223 
-0.064 7.993 7.106 

TABLE VI 
Bivariate Hawkes’ mutually excitmg process 

where P,?~*l~al,~~l 

= 
1.300,0.500,1.500,2.800 

ICL29a217a22~4 )( > 2.500,0.001,1.400,2.100 * 

Length of 
the Interval 

and Numbers 
of Data 

T= 100 
n(“+650 

d2) +750 

T==2500 
n’t)+l6000 

nC2)+19000 

- Log(Likelihood) 
at the True 
Parameter 

- 1573.376 

- Log(Maximuni 
of Likelihood) 

- 1578.276 

- 1385.130 - 1387.372 

-2331.594 - 2336.610 

- 1159.968 - 1162.594 

- 1380.468 - 1381.538 

-36844.227 - 36847.240 

-35538.868 -35542.371 

-37916.281 -37921.286 

-38305.112 -38311.857 

-36965.147 -36969.812 

Maximum Likelihood Estimates 

0.899 0.530 1.5oQ 2.610 
3.138 0.225 1.364 2.588 

1.949 0.560 1.453 2.955 
2.702 0.167 1.251 2.238 

1.695 0.394 1.383 2.538 
2.519 0.066 1.169 1.648 

0.661 0.513 1.374 2.344 
2,888 -0.168 1.271 1.965 

1.150 0.580 1.486 2.791 
2.079 0.104 1.138 1.725 

1.312 0.425 1.452 2.651 
2.483 0.029 1.481 2.247 

1.340 0.479 1.529 2.7% 
2.539 0.058 1.393 2.209 

1.433 0.504 1.530 2.865 
2.644 -0.011 1.331 2.023 

1.144 0.429 1.438 2.531 
2.628 -0.082 1.441 2.083 

1.286 0.472 1.352 2.546 
2.508 0.004 1.381 2.071 
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Encoding for Speech 

Abstract-A low-rate (about one bit per sample) waveform coder for 
spekh compression is designed usiug tecbuiques from universal source 
coding, fake process tree encoding, and linear predictive coding &PC). 
The system does not require on-lime adaptation or LPC analysis, yet it 
yields a fidelity tbat compares well with the best exist@ adaptive-waveform 
coder of the same rate. 

INTRODUCTION 

S PEECH COMPRESSION systems usually fall into 
one of two general classes-waveform coders and 

speech coders. Waveform coders include traditional 
schemes such as fixed and adaptive scalar quantizers, 
delta modulators, predictive quantizers, and more recent 
systems based on information theoretic ideas such as the 
fixed tree encoding systems of Anderson et al., [I], [2], [3], 
and the adaptive tree encoding systems of Jayant and 
Christensen [4], and Wilson and Husain [5], 161. Speech 
coders estimate or model the process producing the ob- 
served waveform and then send a digitized representation 
of this model rather than the waveform itself. Examples of 
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such systems are formant vocoders and linear predictive 
coding (LPC) systems [7], [8]. 

Existing fixed-rate waveform coders operate at bit rates 
from about one bit per sample to over ten bits per sample. 
For the sampling rate of 8 kHz considered here, this yields 
transmission rates of 8000 to 80 000 (bit/s). Speech coders 
operate at lower bit rates-typically from one bit per 
sample down to very low rates such as l/6 bit per sample 

[91. 
Speech coders provide better quality for low to very low 

bit rates, but are generally far more complex than the 
waveform coders. Furthermore, waveform coders are gen- 
erally more robust against speaker variations, background 
noise, and channel errors. Hence, waveform coders are of 
interest when the available channel data rate is adequate, 
although of course one still wishes to keep the data rate as 
low as possible. Here we use recent techniques from 
speech coding and universal source coding to develop a 
waveform coder that operates at the relatively low rate of 
about one bit per sample or 8000 bit/s. This is effectively 
the lowest rate at which there exist intelligible waveform 
coders with fair subjective fidelity. In particular, the adap- 
tive tree coding system of Wilson and Husain [5], [6]- 
which uses LPC techniques for on-line adaptation- 
provides intelligible fair-quality speech at slightly over one 
bit per sample. Our principal goal is to obtain a system 
with comparable fidelity by using universal coding tech- 
niques instead of on-line adaptation. We use LPC tech- 
niques off-line to design a code which requires more 

0018-9448/81/0100-0031$00.75 0 1981 IEEE 


