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General

• Admissions form due Thu 1:30pm in the box outside Terman 418

• We will review the forms and get back by the end of the week

• Office hours: Tuesday 3-4:30pm and by appointment

• Ben’s office hours: Monday 4-6:30

• Contact at EvA: Lisa Borland, lecture April 11

• Data: WRDS database (access details after teams have formed)

• Background material: course website

http://www.stanford.edu/∼barmbrus/2007msande444/
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Project 1

Modeling and predicting the arrival of buy and sell orders

• Goal: forecast the conditional distribution of future trades and

volumes given past trade arrivals and other co-variates

• Important stylized fact: trade times, price changes are clustered

• Model arrival times (T k) as a self-affecting point process

Nt =
∑

k

1{T k≤t}

• Examples: intensity λ of N responds to arrivals

– Birth process: dλt = δdNt

– Hawkes process: dλt = κ(λ∞ − λt)dt + δdNt

– Generalized process: dλt = κ(λ∞ − λt)dt + σ
√

λtdWt + δdNt
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Frequency of trades
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Simulated Hawkes process with λ∞ = 0.7,
δ = 1, κ = 5 and jump size uniform on
{0.4, 0.6, 0.8, 1}
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Arrivals of Poisson and Hawkes processes
with λ∞ = 1, δ = 2, κ = 1.5 and jump size
uniform on {0.4, 0.6, 0.8, 1}

0 5 10 15 20 25 30
0

10

20

30

40

50

Poisson Process

 Time

 

0 5 10 15 20 25 30
0

10

20

30

40

50

Time

Hawkes Process

Kay Giesecke



MS&E 347: Investment Practice 7

Simulated general process with λ∞ = 0.7,
δ = 1, κ = 5, σ = 0.2 and jump size uniform
on {0.4, 0.6, 0.8, 1}
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Project 1

Modeling and predicting the arrival of buy and sell orders

• Estimate parametric intensity model from observed arrivals using

maximum likelihood, for example

• Obtain forecast conditional distribution by inverting the

characteristic function E[eiv(Ns−Nt) | Ft], which we know for a

broad class of self-affecting intensity models

– Used in portfolio credit risk

• Develop and test program trading strategy

• Develop optimal execution strategy, see Hewlett (2006)

– Trader’s dilemma: market impact vs. adverse price movements
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Project 2

Modeling and predicting volatility

• Volatility is a measure of the degree of fluctuation of a security

price around its mean; it is the main driver of option prices

• Goal: Forecast the conditional distribution of future security price

volatility given past prices and other co-variates

• Well known stylized facts of empirical asset returns

– Fat tails relative to the Gaussian distribution: power law

– Volatility clustering: long range memory in volatility; auto

correlation follows power law

– Leverage effect: vol is correlated with price changes
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Daily S&P 500 log-returns October ’82 to
November ’04: skewed and leptokurtic
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Daily log-returns simulated from
N(0.00038, 0.01072)
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Empirical daily S& P 500 return distribution
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Empirical Nasdaq return distribution
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Mean excess 1∑n
i=1 1{ri≤q}

∑n
i=1(q − ri)

+ as a

function of −q for the daily S& P 500 returns
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Power laws

• The empirical mean excess return grows with the negative value of

the threshold

• Intuitively, the more infrequent an event, the higher is the loss: the

data shows that there very few but extreme return fluctuations

• A much better model for the daily return is thus a power law

• A random variable X with distribution function FX follows a

power law with exponent α if

(1− FX(x)) ∼ x−α

That is, the survival probability P [X > x] is asymptotically

proportional to x−α: the tail of the distribution decays like x−α
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Densities of the Normal and the Power law
with α = 1
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IBM price changes
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IBM price changes
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Project 2
• A price event arrives when the price change exceeds some

threshold α

• The sequence of price events forms a point process that is

self-affecting if the volatility clusters

• The intensity or conditional event arrival rate of this process

measures the volatility

• How good is this measure? Relate it to realized volatility

• What are the properties of this volatility measure?

– Clustering

– Distribution of future volatility roughly log-normal

– Higher moments exhibit multi-fractal scaling: E[r(`)n] = cn`bn

– Volatility shock decays like a power law

– Leverage effect
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Project 3

Capital structure arbitrage

• Goal: design and test a trading strategy that exploits relative

mis-pricing in credit and equity markets

• EvA has developed an option pricing model that incorporates the

stylized facts of empirical asset returns discussed above

• Can calibrate this model to market option prices of a given name

• What does the calibrated model imply for the price of a credit

swap referenced on that name?

• Need to model default of the firm along with an equity option:

domain of structural credit models, in which a firm defaults when

its assets hit a lower barrier and the equity of a firm is an option

on firm value
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Project 4

Effect of earnings announcements

• Realized volatility of stock prices rises significantly on the day that

a company reports its earnings

• Option prices (implied volatility) anticipate this increase prior to

the announcement, and then fall as soon as the stock price

absorbs the new information

• Can we validate this pattern statistically based on past earnings

announcements and the corresponding option implied volatilities?

• If so, we can exploit the pattern with a trading strategy
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Project 4

Effect of earnings announcements

• Suppose a hedge fund manager has insider information about

negative news

• The manager would leverage this information by taking positions

in out of the money options

• Can we infer the presence of insider information from the

distribution of the underlying implied by the listed option prices?

• Can compare the shape of the tail of the distribution with

subsequent realized performance
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Project 5

Detecting takeovers and mergers

• Goal: detect likely candidates from typical patters in market prices

• Related to Mike Lipkin’s talk last December in the Financial Math

Seminar: corporate insiders choose a certain strategy to leverage

their information, and we can link that strategy to patterns in the

implied volatility surface

• Of interest are general signatures that dominate the noise
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