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abstract

In this article, we introduce the so-called stochastic conditional intensity (SCI)
model by extending Russell’s (1999) autoregressive conditional intensity (ACI)
model by a latent common dynamic factor that jointly drives the individual
intensity components. We show by simulations that the proposed model
allows for a wide range of (cross-)autocorrelation structures in multivariate
point processes. The model is estimated by simulated maximum likelihood
(SML) using the efficient importance sampling (EIS) technique. By modeling
price intensities based on NYSE trading, we provide significant evidence for a
joint latent factor and show that its inclusion allows for an improved and
more parsimonious specification of the multivariate intensity process.
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The recent literature on high-frequency finance has witnessed a growing interest

in the modeling of multivariate point processes. Multivariate point processes are

particularly important whenever one aims to model simultaneously the arrival

rates of different types of trading events that occur asynchronously and are

irregularly spaced in time. A relevant field of application is, for example, the
modeling of the multivariate process associated with the arrival rates of transac-

tions, quotes, limit orders, or events that are characterized, for example, by

cumulative price changes or cumulative trading volumes of a given size. Research

in this area is particularly devoted to a deeper understanding of the determinants

of the different dimensions of trading activity and their interdependences. A

common finding is the existence of strong commonalities and co-movements in

individual trading characteristics as well as across the market. Russell (1999)

found codependence in the processes of market order arrivals and limit order
arrivals in NYSE trading. Bowsher (2002) provided evidence for a common

pattern in trading intensities and price intensities based on NYSE transaction

data. Spierdijk, Nijman, and van Soest (2002) revealed significant co-movements

in the trading intensities of US department store stocks, which is confirmed by

Heinen and Rengifo (2003). Using limit order book data from the Australian Stock

Exchange, Hall and Hautsch (2004, 2006) found co-movements in the arrival rates

of market orders, limit orders, as well as cancellations on the different sides of the

market. Furthermore, Hautsch (2005) identified a common component in the
trade frequency, the traded volume, as well as the volatility of NYSE blue-chip

stocks.

In this article, we propose and apply a new type of multivariate dynamic

intensity model, which allows to capture a common component in point pro-

cesses. The intensity function is a central concept in the theory of point processes

and is defined as the conditional instantaneous rate of occurrence given the

information set. Since the intensity function is defined in continuous time and

thus allows for a continuous updating of the information set, it is the most natural
concept to overcome the difficulty that the individual events of a multivariate

point process occur asynchronously.

The key assumption in this article is that the intensity function is driven

not only by the observable history of the process but also by a dynamic latent

component. In this sense, our model combines the idea of latent factor models

with the concept of dynamic intensity processes. The proposed model is fully

parametric and can be seen as the counterpart of the stochastic volatility

model [Taylor (1982)] or the stochastic conditional duration model [Bauwens
and Veredas (2004)], which are economically motivated by the mixture-of-

distribution hypothesis. However, although in these models the process

dynamics are completely driven by the dynamics of the latent component
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solely, the stochastic conditional intensity (SCI) model is parameterized in

terms of two components—a univariate latent one and an observation-driven
multivariate one. Because the latter is chosen to be the autoregressive condi-

tional intensity (ACI) model proposed by Russell (1999), we call the resulting

model SCI model.

The SCI model can be interpreted as a multivariate dynamic extension of a

doubly stochastic Poisson process [Grandell (1976), Cox and Isham (1980)], where

the intensity is assumed to be driven by an unobserved stochastic process. Hence,

it generalizes this idea by allowing the latent component itself to follow an

autoregressive process that is updated by latent innovations. The unobservable
factor simultaneously drives all individual point processes with the latent inno-

vations serving as a common shock component. Hence, the SCI model captures

time-varying, common, unobserved heterogeneity and nests the ACI model when

no latent component is present. Therefore, the SCI model (unlike the ACI model)

implies that all randomness is not necessarily ex post observable, and thus, the

intensity function is not necessarily conditionally deterministic given the observa-

ble process history.

On the basis of simulation experiments, we analyze the dynamic properties of
the SCI model under different parameterizations. It turns out that the SCI model

is a flexible tool able to capture the joint dynamics of multivariate point processes,

particularly when they are driven by an underlying common component. The SCI

model is estimated by simulated maximum likelihood (SML). To numerically

integrate out the dynamic latent factor, we use the efficient importance sampling

(EIS) technique introduced by Richard (1998) and illustrate its application to the

proposed model.

We apply the SCI model to test for the presence of a common latent factor in
price intensities (defined as the intensity of cumulative absolute midquote

changes of a given size) of five highly liquid stocks traded at the NYSE. We

find significant evidence for the existence of a persistent common component

that jointly drives the individual processes. It turns out that its inclusion

strongly improves the goodness-of-fit of the model. We show that it captures a

substantial part of the cross-interdependences between the individual point

processes and therefore allows for a quite parsimonious specification of the

five-dimensional system. Nevertheless, confirming the results by Hautsch
(2005), just a single dynamic latent component is not sufficient to fully capture

the joint dynamics of the multivariate process. This confirms the importance of

the idea of combining observation-driven dynamics with parameter-driven

dynamics.

The remainder of this article is organized in the following way. In Section 1,

we present the SCI model and discuss the different parameterizations of the

latent component. Statistical properties of the model are discussed and illu-

strated in Section 2, whereas estimation and diagnostic issues are exposed in
Section 3. The empirical illustration is provided in Section 4, and Section 5 serves

to conclude.
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1 THE SCI MODEL

1.1 The Basic Model Structure

Let t denote physical time and let ftk
i gi2f1,2,…,nkg, k ¼ 1,…,K , denote K sequences of

arrival times with respect to K different types of events. Then, the sequences

ftk
i gi2f1,2,…,nkg, k ¼ 1,…,K , are associated with the components of a K-dimensional

point process with right-continuous counting functions NkðtÞ :¼
P

i�1 ftk
i
�tg and

left-continuous counting functions �NkðtÞ :¼
P

i�1 ftk
i

< tg. Furthermore, let

ftigi2f1,2,…,ng with n ¼
PK

k¼1 nk be the sequence of event arrival times of the simple

pooled point process that pools the K individual point processes and is assumed to

be orderly, that is, 0>t1> � � �>tn. Correspondingly define NðtÞ :¼
P

i�1 fti�tg and

�NðtÞ :¼
P

i�1 fti<tg as the right-continuous and left-continuous counting functions

of the pooled point process ftigi2f1,2,…,ng, respectively.

By denoting F t as the information set up to t, the F t-intensity function is
defined by

�ðt;F tÞ :¼ lim
D#0

1

D
Pr ½Nðtþ DÞ �NðtÞ� > 0jF tf g, ð1Þ

where �ðt;F tÞ is assumed to have sample paths that are left-continuous and have

right-hand limits [Brémaud (1981), Karr (1991)]. Hence, roughly speaking,

�ðt;F tÞ corresponds to the F t-conditional probability per unit time to observe

an event in the next instant.

The F t-intensity function �ðt;F tÞ completely characterizes the evolution of the

point process in dependence of the history F t. Typically, the conditioning set F t is
assumed to be observable consisting of the process history and possible explana-

tory variables. Then, �ðt;F tÞ is conditionally deterministic given the observable

history. However, this assumption can be relaxed by allowing �ðt;F tÞ to depend

not only on observable characteristics but also on unobservable ones. In the

classical duration literature, the inclusion of unobserved heterogeneity effects

plays an important role to obtain well-specified econometric models [Lancaster

(1979), Heckmann and Singer (1984), Horowitz (1996, 1999)]. Accordingly, in the

framework of point processes, the consideration of unobserved factors leads to the
class of doubly stochastic Poisson processes. The standard doubly stochastic Pois-

son process is characterized by the intensity process �ðt;F *
t Þ, where F *

t denotes the

history of some unobserved process up to t. Following this strand of the literature,

we assume that the intensity function depends not only on the observable process

history but also on some unobservable (dynamic) factor. In this context, we define

the information set F t more explicitly as F t :¼ sðF o
t [ F *

t Þ, consisting of an obser-

vable conditioning set F o
t as well as the history F *

t of an unobservable factor �*ðtÞ.
The SCI model is based on the assumption that the intensity function is

driven by observation-driven dynamics as well as latent dynamics. Hence, we

assume that the conditional intensity function given the observable process history
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is not deterministic but stochastic and follows a dynamic process. Assuming

a multiplicative structure in the spirit of Engle (2002), the basic SCI model for
the k-type process is given by

�kðt;F tÞ :¼ lim
D#0

1

D
Pr ½Nkðtþ DÞ �NkðtÞ� > 0jF t

� �
¼ �o,kðtÞ �*

�NðtÞþ1

h is*
k

, ð2Þ

where �*
�NðtÞþ1

:¼ �*ðt �NðtÞþ1Þ denotes a common latent component that depends on

its past history F *
t and is updated at each point of the (pooled) process

ftigi2f1,2,…,ng. The coefficient s*
k is a process-specific scaling parameter driving

the latent factor’s impact on the k-type intensity component. The process-specific

function �o,kðtÞ :¼ �o,kðt;F o
t Þ denotes a conditionally deterministic idiosyncratic

k-type intensity component given the observable history, F o
t .

1.2 The Parameterization of the Latent Component

To identify the latent process �*
i , we have to impose distributional assumptions.

Following the literature on latent factor models [Taylor (1982, 1986), Bauwens and

Veredas (2004)], we assume �*
i to be conditionally i.i.d. lognormally distributed,1

that is,

ln�*
i jF *

ti�1
� i.i.d. Nðm*

i ,1Þ: ð3Þ

It is assumed that �*
i has left-continuous sample paths with right-hand limits. There-

fore, it is indexed by the left-continuous counting function, that is, it is updated

instantaneously after the occurrence of ti�1 and remains constant until ti (inclusive).

For the conditional mean process, we assume an AR(1) dynamic as starting point,

even if the specification can be extended to higher-order processes. Thus,

ln�*
i ¼ a* ln�*

i�1 þ u*
i , u*

i � i.i.d. Nð0,1Þ: ð4Þ

Notice that we omit a constant term because we include it in the observable compo-
nent �o,kðtÞ (Section 1.3). By defining �k*

i :¼ s*
k ln�*

i as the (log) latent component’s

influence on the k-type intensity component, it is straightforwardly seen that

�k*
i ¼ a*�k*

i�1 þ s*
ku*

i :

Hence, s*
k acts multiplicatively with the standard deviation of the latent factor;

therefore, we set Var½u*
i � ¼ 1 in Equation (4). This flexibility ensures that the

1 Clearly, a more flexible distribution, such as the generalized gamma distribution, can be used. Never-

theless, model diagnostics in Section 4 indicate that the lognormal distribution provides sufficient

flexibility for our application.
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influence of �*
i on the individual components can differ. Note that s*

k can be even

negative. Hence, the latent component can simultaneously increase one component
while decreasing another one. However, because of the symmetry of the assumed

distribution of ln�*
i , the signs of the scaling parameters s*

k are not identified. For

example, we cannot distinguish between the cases s*
1 > 0,s*

2 < 0 and s*
1 < 0,s*

2 > 0

but can only identify whether the latent component influences the two components

in opposite directions. For that reason, we have to impose an identification

assumption that restricts the sign of one of the coefficients s*
k. This is sufficient

to identify the sign of the remaining parameters s*
j , j 6¼ k.

The basic model can be extended by specifying the process-specific scaling
parameters s*

k to be time-varying allowing for conditional heteroskedasticity in

the latent process. An example of conditional heteroskedasticity could be intra-

daily seasonality associated with deterministic fluctuations of the overall infor-

mation and activity flow that could be driven by institutional settings, like the

opening of other related markets. A natural specification could be to index s*
k

itself by the counting function and parameterize it in terms of a linear spline

function:

s*
k,i ¼ s*

k 1þ
XM
m¼1

n*
m1ftðtiÞ>�tmg½tðtiÞ � �tm�

( )
, ð5Þ

where tðtiÞ denotes the time of day at ti, and �tm, m ¼ 1,…,M, denote exogenously

given knots dividing the trading day into subperiods and n*
m the corresponding

coefficients of the spline function.

A further valuable generalization is to allow the autoregressive para-
meter a* to depend on the time elapsed since the last event. The motivation

for this extension is that the latent factor is (per nature of the data) observable

only at irregularly spaced points in time. Therefore, the serial dependence of

the latent component could depend on the length of the sampling intervals.

To capture such effects without imposing a strong a priori structure, we allow

for regime-switching latent dynamics in dependence of the length of the

previous spell. Such a specification is in line with a threshold model and is

given by

ln�*
i ¼ a*

r f�xr�1>x �NðtÞ � �xrg ln�*
i�1 þ u*

i , r ¼ 1,…,R, ð6Þ

where xi :¼ ti � ti�1, �xr denotes the thresholds (with �x0 :¼ 0 and �xR ¼ 1), and a*
r

are the regime-dependent latent autoregressive parameters. To keep the model

computationally tractable, we fix the thresholds �xr exogenously. Nevertheless, a

further extension would be to allow for endogenous thresholds that are estimated

together with the other model parameters [Tong (1990), Zhang, Russell, and Tsay

(2001)].
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1.3 The Parameterization of the Observation-Driven Component

The observation-driven component �o,kðtÞ is specified as an ACI model,2 that is,

�o,kðtÞ ¼ Ck
�NðtÞþ1

�k
0ðtÞhkðtÞ, k ¼ 1,…,K , ð7Þ

where Ck
i captures the dynamic structure and possible exogenous variables, �k

0ðtÞ
is a baseline intensity component, and hkðtÞ is a deterministic function (e.g., to

capture seasonality).

For the parameterization of the baseline intensity function, we propose a

product of Burr-type hazard functions, that is,

�k
0ðtÞ ¼ expðokÞ

YK
r¼1

xrðtÞp
k
r�1

1þ kk
r xrðtÞpk

r

, pk
r > 0,kk

r � 0, ð8Þ

where xrðtÞ :¼ t� tr
�NrðtÞ denotes the backward recurrence time associated with the

rth process. The parameters pk
r and kk

r determine the shape of �k
0ðtÞ between two

k-type events as a deterministic function of the times elapsed since the most

recent events in all K processes. A special case occurs when the kth process

depends only on its own backward recurrence time, in which case pk
r ¼ 1 and

kk
r ¼ 0, 8 r 6¼ k.

To ensure the positivity of �o,kðtÞ, we specify Ck
i as an exponential transfor-

mation of a stochastic process and of explanatory variables zi. Hence,

Ck
i ¼ exp ~Ck

i þ z
0

i�1Z
k

� �
, ð9Þ

where Zk are process-specific parameters associated with covariates observed at

the most recent point. The process ~Ck
i is a left-continuous dynamic process that

is updated instantaneously after the occurrence of ti�1 and does not change

until ti. Following Russell (1999), we specify the ðK·1Þ vector

Ci :¼ ðC1
i ,C2

i ,…,CK
i Þ

0
as a vectorial autoregressive moving average (VARMA)

process , which is parameterized as3

~Ci ¼
XK

k¼1

Akei�1 þ B ~Ci�1

� �
yk

i�1, ð10Þ

where ei is a (scalar) innovation term, Ak ¼ fak
j g is a ðK·1Þ coefficient vector

reflecting the impact of ei on the intensity of the K processes when the previous

point ðt �NðtÞÞ was of type k, and B ¼ fbijg denotes a ðK·KÞ coefficient matrix.

2 For an alternative specification based on a multivariate Hawkes process, see Bauwens and Hautsch

(2003).
3 For simplicity, we restrict our presentation to a lag order of one. The extension to higher-order specifica-

tions is straightforward.
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Finally, yk
i is an indicator variable that takes on the value 1 if the ith point of the

pooled process is of type k.
As suggested by Russell (1999), a natural way to update the autoregressive

process (10) by new information is to specify the innovation variable in terms of

the integrated intensity

Lk tk
i�1,tk

i

� �
:¼

Ztk
i

tk
i�1

�kðu;F uÞdu: ð11Þ

Using the multivariate random time change theorem proven by Brown and Nair

(1988), it can be shown that under fairly weak regularity conditions, the processes

Lkð0,tk
i Þ, i ¼ 1,…,nk, k ¼ 1,…,K , are independent Poisson processes with unit

intensity.4 Consequently, the integrated intensity function Lkðtk
i�1,tk

i Þ corresponds

to the increment of a unit Poisson process and thus is i.i.d. standard exponen-
tially distributed, that is,

Lkðtk
i�1,tk

i Þ ¼
XNðtk

i
Þ�1

j¼Nðtk
i�1
Þ
Lkðtj ,tjþ1Þ � i.i.d. Expð1Þ: ð12Þ

However, to be able to compute the innovation term based on the observable

history of the process, we propose to specify it in terms of the integrated
observation-driven intensity component, which is given by

Lo,k tk
i�1,tk

i

� �
:¼

XNðtk
i
Þ�1

j¼Nðtk
i�1
Þ

Ztjþ1

tj

�o,kðuÞdu ¼
XNðtk

i
Þ�1

j¼Nðtk
i�1
Þ
�*

j

� ��s*
k

Lk tj ,tjþ1

� �
: ð13Þ

Thus, Lo,k tk
i�1,tk

i

� �
corresponds to the sum of (piecewise) integrated k-type inten-

sities that are observed through the duration spell and are standardized by the

corresponding (scaled) realizations of the latent component, ð�*
j Þ
�s*

k , during that

spell. Using Lo,kð�Þ, we propose to specify the SCI innovation ei as

ei ¼
XK

k¼1

�g� lnLo,k tk
NkðtiÞ�1,tk

NkðtiÞ

h in o
yk

i , ð14Þ

where g :¼ 0:5772 denotes Euler’s constant. Hence, ei is a function of the integral

over the observation-driven intensity component, computed over the time

between the two most recent points of the process that has been observed at ti.

4 For a more detailed discussion of the random time change argument, see Bowsher (2002).
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Therefore, it is a function of the past interevent waiting time, the past intensity,

and the past realizations of the latent component. The major advantage of this
specification is that ei can be computed exclusively based on past observables.

This leads to a clear-cut separation between the observation-driven and the

parameter-driven components of the model and eases the estimation of the

model considerably (Section 3). However, as discussed in the following section,

it is generally difficult to derive the distributional and dynamical properties of

Lo,k tk
i�1,tk

i

� �
analytically. Nevertheless, in the most simple case of a process with-

out latent factor ð�*
i ¼ 1Þ, lnLo,k tk

i�1,tk
i

� �
corresponds to the logarithm of an i.i.d.

standard exponential variate, which is an i.i.d. standard Gumbel (minimum)
variate with a mean equal to g and a variance equal to p2=6.5

Alternatively, Bowsher (2002) proposed to specify the innovation in

terms of the integrated intensity associated with the pooled process

ftigfi¼1,2,…,ng. Adopting this idea in our framework, the innovation term might

be alternatively specified as

ei ¼ �g� ln
XK

k¼1

Lo,kðti�1,tiÞ ¼ �g� ln
XK

k¼1

ð�*
i Þ
�s*

kLkðti�1,tiÞ,

:¼ �gþ s*
k ln�*

i � lnLðti�1,tiÞ, ð15Þ

where Lðti�1,tiÞ :¼
PK

k¼1 L
kðti�1,tiÞ ¼

R ti

ti�1
�ðu;F uÞdu denotes the integrated inten-

sity with respect to the pooled process of all points. In this specification of the

innovation term, at each point ti, the autoregressive process is updated by a

function of the sum of all process-specific integrated intensities, computed over
the time between the two most recent points of the pooled process. Hence, in

difference to specification (14), ei does not depend on the type of the most

recently observed point.

Note that according to both innovation specifications (14) and (15) ei depends

on lagged values of the latent factor �*
i . Therefore, �*

i influences the intensity

process �kðt;F tÞ in two ways: first, it affects �kðt;F tÞ contemporaneously

[according to Equation (2)] and, second, by lagged realizations which interact

with ei�1. For this reason, the latent factor causes cross-autocorrelations not only
between �kðt;F tÞ but also between the individual observation-driven compo-

nents �o,kðtÞ, k ¼ 1,…,K . As illustrated in Section 4, this feature allows the

model to capture cross-dependences between the individual intensity processes

in a quite parsimonious way.

A more detailed discussion of the statistical properties of both innovation

term specifications and their implications for the stationarity of the process is

provided in the following section.

5 For this reason, we subtract g in Equation (14). Note that this is just a matter of centering and does not

affect the dynamic properties of the model.

458 Journal of Financial Econometrics



2 PROBABILISTIC PROPERTIES OF SCI MODELS

As a result of (12), under correct model specification, Lo,k tk
i�1,tk

i

� �
corresponds to

an i.i.d. standard exponential variate that is piecewise standardized by a strictly

stationary lognormal random variable (if ja*j<1). However, the difficulty is that

these pieces (corresponding to the durations between consecutive points of the
pooled process) themselves depend on the multivariate intensity process and

thus are determined endogenously. Therefore, analytical results regarding the

distributional and dynamical properties of Lo,k tk
i�1,tk

i

� �
are (still) not available.

Nevertheless, we can conclude that ei follows at least a weakly stationary process

because it consists of random arrangements of strictly stationary lognormal

random variables and i.i.d. standard Gumbel variates. In specification (15), ei is

an additive function of a strictly stationary normal random variable and an i.i.d.

variate and thus is itself strictly stationary. Hence, both specifications (14) and
(15) imply at least weakly stationary innovations given that ja*j < 1:

The SCI model is a switching VARMA(1,1) model that is augmented by a

dynamic latent component. This is illustrated by rewriting a bivariate version of

the model in logarithmic terms. By excluding covariates and assuming for sim-

plicity that �k
0ðtÞ ¼ expðokÞ and hkðtÞ ¼ 1 for k ¼ 1,2, the model is obtained as

ln�1ðt;F tÞ � o1 ¼ ak
1e �NðtÞ þ s*

1a* � s*
1b11 � s*

2b12

� �
ln�*

�NðtÞ

n
þs*

1u*
�NðtÞþ1

þ b11 ln�1 t �NðtÞ;F t �NðtÞ

� �
� o1

h i
þb12 ln�2 t �NðtÞ;F t �NðtÞ

� �
� o2

h io
yk

�NðtÞ, ð16Þ

ln�2ðt;F tÞ � o2 ¼ ak
2e �NðtÞ þ s*

2a* � s*
2b22 � s*

1b21

� �
ln�*

�NðtÞ

n
þs*

2u*
�NðtÞþ1

þ b21 ln�1 t �NðtÞ;F t �NðtÞ

� �
� o1

h i
þb22 ln�2 t �NðtÞ;F t �NðtÞ

� �
� o2

h io
yk

�NðtÞ: ð17Þ

The choice of the parameterization of Ak and B determines the dynamic and

interdependence structure of the components Ck
i . For example, if ak

j ¼ 0 and

bjk ¼ 0 for j 6¼ k, then Cj
i is updated with new information only when a point

of type j has occurred. Then, Cj
i is exclusively driven by lags of itself as long as

process k 6¼ j is observed.

Hence, because of the log-linear structure of both components �o,kðtÞ and �*
i ,

the model corresponds to an autoregressive process depending on i.i.d. latent

innovations fu*
i g that update the latent component �*

i and on at least weakly

stationary innovations feig that update the observation-driven component �o,kðtÞ.
Therefore, the weak stationarity of the SCI process depends on the stationarity of

the two components �*
i and �o,kðtÞ, which is ensured by the conditions ja*j<1 and

the eigenvalues of B lying inside the unit circle.
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The computation of conditional moments of �ðt;F o
t Þ given the observable

information set requires to integrate the latent variable out. For notational con-
venience, assume that there is no covariate zi and denote the data matrix by W ,

with typical row wi :¼ ðti,y
1
i ,…,yK

i Þ consisting of the n points ti and the individual

indicator variables yk
i ,k ¼ 1,…,K . Let Wi :¼ fwjgi

j¼1 and correspondingly

L*
i :¼ fln�*

j g
i
j¼1. Moreover, let f ðWi,L

*
i jyÞ denote the joint density function of

Wi and L*
i and pðl*

i jWi�1,L*
i�1,yÞ the conditional density of l*

i :¼ ln�*
i given Wi�1

and L*
i�1, where y denotes the parameter vector of the model. Then, the condi-

tional expectation of an arbitrary function of l*
i , Wðl*

i Þ, given the observable

information set up to ti�1, is computed as6

E Wðl*
i Þ F o

ti�1

��h i
¼
R
Wðl*

i Þpðl*
i jWi�1,L*

i�1,yÞf ðWi�1,L*
i�1jyÞdL*

iR
f ðWi�1,L*

i�1jyÞdL*
i�1

: ð18Þ

The integrals in this ratio cannot be computed analytically but can be approxi-

mated numerically by EIS (Section 3.2).

In general, the computation of the conditional expectation of the future
arrival time given the observable process history, E½tijF o

ti�1
�, is conducted by

exploiting the distributional properties of the integrated intensity, Lkðtk
i�1,tk

i Þ �
i.i.d. Exp(1). Then, by applying the law of iterated expectations, E½tijF o

ti�1
� is

computed as

E ti F o
ti�1

��h i
¼ E g1ð�Þ F o

ti�1

��h i
ð19Þ

g1ð�Þ ¼ E ti l*
i�1,F o

ti�1

��h i
¼ E g2ð�Þ l*

i�1,F o
ti�1

��h i
; ð20Þ

where ti ¼ g2ðLi;F o
ti�1

,l*
i�1Þ is determined by solving the equation Lðti,ti�1Þ ¼ Li,

given l*
i�1, F o

ti�1
, and a (unit exponential) random draw of Li. This has to be done

numerically, because typically a closed-form solution for g2ð�Þ does not exist.

After computing (20), one has to integrate over the latent variable as shown in

(18). The computation of alternative conditional moments, such as E½�ðtiÞjF ti�1
�, is

done similarly.

The computation of unconditional moments of the intensities and correspond-
ing interevent durations is done by simulation, because no closed-form analytical

expression can be derived. We simulated several SCI processes under different

parameterizations and computed the resulting autocorrelation functions (ACFs)

and cross-ACFs (CACFs) of the intensity components and of the implied duration

series. Figures 1 through 5 show the (C)ACFs of the individual intensity compo-

nents �o,kðtiÞ, �*
i , and �kðti;F ti

Þ as well as the corresponding duration processes

6 The expectation depends also on y, but for simplicity we drop it in the notations.
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Figure 1 Bivariate SCI(1,1) processes. Top left: autocorrelation function (ACF) of �o,1ðtiÞ and �o,2ðtiÞ. Top middle: cross-ACF (CACF) of �o,1ðtiÞ and
�o,2ðtiÞ. Top right: ACF of �*

i . Bottom left: ACF of �1ðti;F ti
Þ and �2ðti;F ti

Þ. Bottom middle: CACF of �1ðti;F ti
Þ and �2ðti;F ti

Þ. Bottom right: ACF of x1
i and

x2
i . Results based on 5,000,000 simulations; o1 ¼ o2 ¼ 0, a1

1 ¼ a2
2 ¼ 0:05, a1

2 ¼ a2
1 ¼ 0, b11 ¼ 0:97, b12 ¼ b21 ¼ 0, b22 ¼ 0:7, a* ¼ 0:95, s*

1 ¼ s*
2 ¼ 0:01

[Equations (16) and (17)]. Innovations specified according to (14).
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Figure 2 Bivariate SCI(1,1) processes. Top left: autocorrelation function (ACF) of �o,1ðtiÞ and �o,2ðtiÞ. Top middle: cross-ACF (CACF) of �o,1ðtiÞ and
�o,2ðtiÞ. Top right: ACF of �*

i . Bottom left: ACF of �1ðti;F ti
Þ and �2ðti ;F ti

Þ. Bottom middle: CACF of �1ðti;F ti
Þ and �2ðti;F ti

Þ. Bottom right: ACF of x1
i

and x2
i . Results based on 5,000,000 simulations; o1 ¼ o2 ¼ 0, a1

1 ¼ a2
2 ¼ 0:05, a1

2 ¼ a2
1 ¼ 0, b11 ¼ 0:97, b12 ¼ b21 ¼ 0, b22 ¼ 0:7, a* ¼ 0:99, s*

1 ¼ s*
2 ¼ 0:1

[Equations (16) and (17)]. Innovations specified according to (14).

4
6

2
Jo

u
rn

al
o

f
Fin

an
cial

Eco
n

o
m

etrics



Figure 3 Bivariate SCI(1,1) processes. Top left: autocorrelation function (ACF) of �o,1ðtiÞ and �o,2ðtiÞ. Top middle: Cross-ACF (CACF) of �o,1ðtiÞ and
�o,2ðtiÞ. Top right: ACF of �*

i . Bottom left: ACF of �1ðti ;F ti
Þ and �2ðti ;F ti

Þ. Bottom middle: CACF of �1ðti;F ti
Þ and �2ðti;F ti

Þ. Bottom right: ACF of x1
i

and x2
i . Results based on 5,000,000 simulations; o1 ¼ o2 ¼ 0, a1

1 ¼ a1
2 ¼ a2

1 ¼ a2
2 ¼ 0:05, b11 ¼ 0:97, b12 ¼ b21 ¼ 0, b22 ¼ 0:7, a* ¼ 0:99, s*

1 ¼ s*
2 ¼ 0:1

[Equations (16) and (17)]. Innovations specified according to (14).
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Figure 4 Bivariate SCI(1,1) processes. Top left: autocorrelation function (ACF) of �o,1ðtiÞ and �o,2ðtiÞ. Top middle: Cross-ACF (CACF) of �o,1ðtiÞ and
�o,2ðtiÞ. Top right: ACF of �*

i . Bottom left: ACF of �1ðti;F ti
Þ and �2ðti ;F ti

Þ. Bottom middle: CACF of �1ðti;F ti
Þ and �2ðti ;F ti

Þ. Bottom right: ACF of x1
i

and x2
i . Results based on 5,000,000 simulations; o1 ¼ o2 ¼ 0, a1

1 ¼ a1
2 ¼ a2

1 ¼ a2
2 ¼ 0:05, b11 ¼ b22 ¼ 0:2, b12 ¼ b21 ¼ 0, a* ¼ 0:95, s*

1 ¼ s*
2 ¼ 0:5 [Equa-

tions (16) and (17)]. Innovations specified according to (14).
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Figure 5 Bivariate SCI(1,1) processes. Top left: autocorrelation function (ACF) of �o,1ðtiÞ and �o,2ðtiÞ. Top middle: Cross-ACF (CACF) of �o,1ðtiÞ and �o,2ðtiÞ.
Top right: ACF of �*ðtiÞ. Bottom left: ACF of �1ðti;F ti

Þ and �2ðti;F ti
Þ. Bottom middle: CACF of �1ðti;F ti

Þ and �2ðti;F ti
Þ. Bottom right: ACF of x1

i and x2
i .

Results based on 5,000,000 simulations; o1 ¼ o2 ¼ 0, a1
1 ¼ a2

1 ¼ a1
2 ¼ a2

2 ¼ 0:05, b11 ¼ 0:97, b12 ¼ b21 ¼ 0, b22 ¼ 0:7, a* ¼ 0:95, s*
1 ¼ 0:1, s*

2 ¼ �0:1 [Equa-
tions (16) and (17)]. Innovations specified according to (14).
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xk
i :¼ tk

i � tk
i�1 with k 2 f1,2g based on simulated bivariate SCI(1,1) processes

imposing a constant baseline intensity function, and a diagonal specification
of B.7 The plots in Figures 1 and 2 are based on SCI specifications implying no

interdependence between the individual observation-driven components

�o,kðtÞ, k ¼ 1,2, and strong serial dependence in the latent component. As

expected, the influence of the latent component strongly depends on the size

of the process-specific scaling parameters s*
1 and s*

2. In particular, the process

underlying Figure 1 is based on a* ¼ 0:95 and s*
1 ¼ s*

2 ¼ 0:01 implying very

weak cross-autocorrelations between �1ðti;F ti
Þ and �2ðti;F ti

Þ. In contrast, in

Figure 2, we have a* ¼ 0:99 and s*
1 ¼ s*

2 ¼ 0:10 so that the persistence and the
influence of the latent component are significantly stronger. This increases the

cross-autocorrelations between �1ðti;F ti
Þ and �2ðti;F ti

Þ but induces also a slight

contemporaneous correlation between the observation-driven components

�o,1ðtiÞ and �o,2ðtiÞ. As explained in the previous section, this feature is due to

the fact that �*
i not only contemporaneously influences the intensity compo-

nents but also interacts with the lagged SCI innovations ei. It is apparent that the

dynamics of the latent component dominate the dynamics of the particular

processes �1ðti;F ti
Þ and �2ðti;F ti

Þ, as well as of x1
i and x2

i , resulting in relatively
similar patterns of the ACFs. Moreover, we observe a clear increase of the

autocorrelations in the duration processes and their persistence in comparison

to Figure 1. This type of ACF has the typical shape found empirically for

durations based on stock market data, such as the series we use in the applica-

tion presented in Section 4.

Figure 3 illustrates the dynamic properties of SCI processes where the observa-

tion-driven components �o,1ðtiÞ and �o,2ðtiÞ are symmetrically interdependent, that

is, a1
1 ¼ a1

2 ¼ a2
1 ¼ a2

2 ¼ 0:05. Here, the latent factor reinforces the interdependences
between the two processes and drives the ACFs of the individual intensity compo-

nents towards higher similarity. Moreover, although the CACF of �o,1ðtiÞ versus

�o,2ðtiÞ shows an asymmetric shape,8 the impact of the latent factor induces a more

symmetric shape of the CACF between �1ðti;F ti
Þ and �2ðti;F ti

Þ.
The data-generating process underlying the plots in Figure 4 imposes weak

dynamics in the observation-driven intensity components �o,1ðtiÞ and �o,2ðtiÞ,
whereas the influence of �*

i is assumed to be quite strong. Here, the dynamics

of �*
i completely dominate the dynamics of the bivariate system. It causes strong,

similar autocorrelations in the observation-driven components �o,1ðtiÞ and �o,2ðtiÞ,
as well as in the resulting intensities �1ðti;F ti

Þ and �2ðti;F ti
Þ. Moreover, its

impact on the CACF is clearly stronger than in the cases discussed above.

Particularly the contemporaneous correlation between �1ðti;F ti
Þ and �2ðti;F ti

Þ
is close to one. Nevertheless, because of the (stationary) latent AR(1) structure,

the CACF dies out geometrically.

7 Furthermore, we restrict our illustrations to the specification of the innovation term as given by Equation

(14). The corresponding results based on the alternative specification (15) are quite similar.
8 This is due to difference between the persistence parameters b11 ¼ 0:97 and b22 ¼ 0:7.
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The parameterization associated with Figure 5 implies opposite signs of the

process-specific scaling parameters with s*
1 ¼ 0:1 and s*

2 ¼ �0:1. It is evident that
the latent component influences �1ðti;F ti

Þ positively while influencing �2ðti;F ti
Þ

negatively. This generates negative cross-autocorrelations between �1ðti;F ti
Þ and

�2ðti;F ti
Þ as well as a flattening of the CACF between the observation-driven

components compared to Figure 3.

The reported simulation results illustrate the ability of the SCI model to

generate a wide range of (cross-)autocorrelation structures in point processes. In

particular, it is shown that the existence of a persistent latent component can be a

source of significant cross-autocorrelations and contemporaneous correlations
between the individual intensity components even when there are no interdepen-

dences between the observation-driven components. As illustrated in Section 4,

this feature allows for a parsimonious statistical description of high-dimensional

interdependent point processes.

3 STATISTICAL INFERENCE

According to Brémaud (1981) and Karr (1991), likelihood-based inference can be

performed based on the intensity function solely. Following Karr (1991), the

(genuine) conditional likelihood function given L*
n ¼ fln�*

i g
n
i¼1 and the model

parameter y is given by

LðW ,L*
n;yÞ ¼

Yn

i¼1

YK
k¼1

exp½�Lkðti�1,tiÞ� �o,kðtiÞ �*
i

� �s*
k

h iyk
i

, ð21Þ

where

Lkðti�1,tiÞ ¼ �*
i

� �s*
k Lo,kðti�1,tiÞ: ð22Þ

By employing the ‘‘exponential formula’’ according to Yashin and Arjas (1988),

the expression exp½�Lkðti�1,tiÞ� is equal to the (conditional) k-type survivor

function. Then, (21) corresponds to the typical likelihood function of a duration

process. In particular, for any i, the process to which ti corresponds (assume it is

process j, so that y
j
i ¼ 1 and yk

i ¼ 0 8 k 6¼ j) contributes to the likelihood function

by its probability density function, given by the product of the intensity function

�jðti ;F ti
Þ and the survivor function exp½�Ljðti�1,tiÞ�. All other processes enter

the likelihood function only in terms of their survivor function.9

9 Note that the validity of the ‘‘exponential formula’’ requires to preclude jumps of the conditional survivor

function induced by changes of the conditioning set during a duration spell. However, particularly in the

context of multivariate processes, this assumption is very restrictive. Nevertheless, even when

exp½�Ljðti�1,tiÞ� cannot be interpreted as a (conditional) survivor function, specification (21) is properly

defined and allows for valid statistical inference. For more details, see Yashin and Arjas (1988) and the

discussion in Bowsher (2002).
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Correspondingly, the unconditional (or integrated) likelihood function is

obtained by integrating with respect to L*
n using the assumed normal distributions

Nðm*
i ,1Þ for each l*

i . Then,

LðW ; yÞ ¼
Z Yn

i¼1

YK
k¼1

�*
i

� �s*
k
yk

i exp � �*
i

� �s*
k Lo,kðti�1,tiÞ

h i
�o,kðtiÞ
	 
yk

i

·
1ffiffiffiffiffiffi
2p
p exp �ðl

*
i �m*

i Þ
2

2

" #
dL*

n: ð23Þ

¼
Z Yn

i¼1

f ðwi,l
*
i jWi�1,L*

i�1,yÞdL*
n: ð24Þ

3.1 Numerical Computation of the Likelihood Function

To compute the n-dimensional integral in Equation (23), we employ the EIS
algorithm proposed by Richard (1998), which has proven to be highly efficient10

for the computation of the likelihood function of stochastic volatility models

[Liesenfeld and Richard (2003)], to which the SCI model resembles in this respect.

Importance sampling is implemented by rewriting the integral (24) as

LðW ; yÞ ¼
Z Yn

i¼1

f ðwi,l
*
i jWi�1,L*

i�1,yÞ
mðl*

i jL*
i�1,fiÞ

Yn

i¼1

mðl*
i jL*

i�1,fiÞdL*
n, ð25Þ

where fmðl*
i jL*

i�1,fiÞg
n
i¼1 denotes a sequence of auxiliary importance samplers for

fl*
i g

n
i¼1 depending on the auxiliary parameters ffig

n
i¼1. The corresponding impor-

tance sampling Monte Carlo estimate of LðW ; yÞ is given by

L̂RðW ; yÞ ¼ 1

R

XR

r¼1

Yn

i¼1

f ðwi,l
*ðrÞ
i jWi�1,L

*ðrÞ
i�1 ,yÞ

mðl*ðrÞ
i jL

*ðrÞ
i�1 ,fiÞ

, ð26Þ

where fl*ðrÞ
i g

n
i¼1 denotes a trajectory of random draws from the sequence of

auxiliary importance samplers fmðl*
i jL*

i�1,fiÞg
n
i¼1, and R is the number of gener-

ated trajectories. Under standard regularity conditions, L̂RðW ; yÞ converges in
probability to LðW ; yÞ; see the discussion by Richard (1998).

The principle of EIS is to choose the auxiliary parameters ffig
n
i¼1 in a way that

provides a good match between fmðl*
i jL*

i�1,fiÞg
n
i¼1 and ff ðwi,l

*
i jWi�1,L*

i�1,yÞgn
i¼1. In

10 Here, efficiency refers to simulation efficiency, not to statistical efficiency.
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particular, the ‘‘efficiency step’’ in the EIS algorithm consists of the minimization of

the sampling variance of L̂RðW ; yÞ.
Let kðL*

i ,fiÞ denote a density kernel for mðl*
i jL*

i�1,fiÞ, defined by

kðL*
i ,fiÞ ¼ mðl*

i jL*
i�1,fiÞwðL*

i�1,fiÞ, ð27Þ

where

wðL*
i�1,fiÞ ¼

Z
kðL*

i ,fiÞdl*
i ð28Þ

is the integrating constant. EIS requires the selection of a class of density kernels

kð�Þ for the auxiliary sampler mð�Þ that provide a good approximation to the

product f ðwi,l
*
i jWi�1,L*

i�1,yÞ wðL*
i�1,fiÞ. As illustrated by Richard (1998), a conve-

nient and efficient possibility is to use a parametric extension of the direct

sampler, which is a normal distribution in our context. Therefore, we approx-

imate the function

YK
k¼1

�*
i

� �s*
k
yk

i exp½� �*
i

� �s*
k Lo,kðti�1,tiÞ� ð29Þ

that appears in Equation (23) by the normal density kernel

zðl*
i Þ ¼ exp½f1,il

*
i þ f2,i l*

i

� �2�: ð30Þ

By including the Nðm*
i ,1Þ density function in the importance sampler

mðl*
i jL*

i�1,fiÞ and using the property that the product of normal densities is itself

a normal density, we can write a density kernel of mð�Þ as

kðL*
i ,fiÞ / exp f1,i þm*

i

� �
l*
i þ f2,i �

1

2

� 

l*
i

� �2

� �

¼ exp � 1

2p2
i

ðl*
i � miÞ2

� �
exp

m2
i

2p2
i

�
m*

i

� �2

2

" #
, ð31Þ

where

p2
i ¼ ð1� 2f2,iÞ

�1 ð32Þ

mi ¼ f1,i þm*
i

� �
p2

i : ð33Þ

Bauwens & Hautsch | Stochastic Conditional Intensity Processes 469



Then, according to Equation (28), the integrating constant is given by

wðL*
i�1,fiÞ ¼ exp

m2
i

2p2
i

�
m*

i

� �2

2

" #
ð34Þ

(neglecting the factor pi

ffiffiffiffiffiffi
2p
p

, because it depends neither on L*
i�1 nor on fi).

Richard (1998) showed that the minimization of the Monte Carlo variance of

L̂RðW ; yÞ can be split into n minimization problems of the form

min
fi,0,fi

PR
r¼1 ln f wi,l

*ðrÞ
i jWi�1,L

*ðrÞ
i�1 ,y

� �
w L

*ðrÞ
i ,fiþ1

� �h i
� f0,i � ln k L

*ðrÞ
i ,fi

� �n o2

,

ð35Þ

where f0,i are auxiliary proportionality constants, fl*ðrÞ
i g

n
i¼1 denotes a trajectory of

random draws from the sequence of direct samplers fNðm*
i ,1Þgn

i¼1, and kðL*
i ,fiÞ is

a normal density kernel according to (31). These problems can be solved sequen-

tially starting at i ¼ n, under the initial condition wðL*
n,fnþ1Þ ¼ 1 and ending at

i ¼ 1. The individual minimization problems are solved by computing ordinary

least squares estimates of fi,0 and fi ¼ ðf1,i,f2,iÞ.
To summarize, the EIS algorithm requires the following steps:

Step 1: Generate R trajectories fl*ðrÞ
i g

n
i¼1 using the direct samplers fNðm*

i ,1Þgn
i¼1.

Step 2: For each i (from n to 1), estimate by OLS the regression (with R observa-

tions) implicit in (35), which takes precisely the following form:

s*
kyk

i ln�
*ðrÞ
i � �

*ðrÞ
i

� �s*
k
XK

k¼1

Lo,kðti�1,tiÞ þ
XK

k¼1

yk
i ln�o,kðtiÞ þ ln w L

*ðrÞ
i ,fiþ1

� �h i

¼ f0,i þ f1,i ln�
*ðrÞ
i þ f2,i ln�

*ðrÞ
i

h i2

þ uðrÞ, r ¼ 1, …, R, ð36Þ

where uðrÞ is an error term, using w L
*ðrÞ
n ,fnþ1

� �
¼ 1 as initial condition, and

then (34).

Step 3: Generate R trajectories fl*ðrÞ
i g

n
i¼1 using the EIS samplers fNðmi,p

2
i Þg

n
i¼1

[Equations (32) and (33)] to compute L̂RðW ; yÞ as defined in Equation (26).

As mentioned in Section 1, an important property of the SCI model is that the

computation of the terms Lo,kðti�1,tiÞ and �o,kðti;F o
ti
Þ can be done separately before

running the EIS algorithm. This eases the computation burden considerably.

Liesenfeld and Richard (2003) recommended to iterate steps 1–3 about five

times to improve the efficiency of the approximations. This is done by replacing the
direct sampler in step 1 by the importance samplers built in the previous iteration.

Furthermore, as suggested by Liesenfeld and Richard, a more efficient alternative

is to start step 1 (of the first iteration) with another sampler than the direct one.

This is achieved by immediately multiplying the direct sampler by a normal
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approximation to s*
k ln�*

i � ð�*
i Þ

s*
k
PK

k¼1 L
o,kðti�1,tiÞ, using a second-order Taylor

expansion (TSE) of the argument of the exponential function around l*
i ¼ 0,

s*
kyk

i ln�*
i � �*

i

� �s*
k

XK

k¼1

Lo,kðti�1,tiÞ � constantþ ln�*
i � ðln�*

i Þ
2
XK

k¼1

Lo,kðti�1,tiÞ:

ð37Þ

This implies that f1,i ¼ 1 and f2,i ¼ �
PK

k¼1 L
o,kðti�1,tiÞ must be inserted into (32)

and (33) to obtain the moments of the TSE normal importance sampler. In this

way, the initial importance sampler already takes into account the data which

enables one to reduce the number of iterations.

3.2 Testing the SCI Model

To evaluate the series of the latent component f�*
i g and to compute conditional

moments (Section 2) as well as forecasts, it is necessary to produce sequences of

filtered estimates of functions of the latent variable �*
i , which take the form of the

ratio of integrals in Equation (18). As proposed by Liesenfeld and Richard (2003),

the integrals in the denominator and numerator can be evaluated by Monte Carlo

integration using the EIS algorithm where y is set equal to its corresponding
maximum likelihood estimate. Then, the integral in the denominator corresponds

to LðWi�1; yÞ, that is, the marginal likelihood function of the first i � 1 observa-

tions, which is evaluated on the basis of the sequence of auxiliary samplers

fmðl*
j jL*

j�1,f̂i�1
j Þg

i�1
j¼1, where ff̂i�1

j g denotes the value of the EIS auxiliary para-

meters associated with the computation of LðWi�1; yÞ. Furthermore, the numera-

tor of Equation (18) is approximated by

1

R

XR

r¼1

W l
*ðrÞ
i ðyÞ
h iYi�1

j¼1

f wj ,l
*ðrÞ
j ðf̂i�1

j ÞjWj�1,L
*ðrÞ
j�1ðf̂

i�1
j�1Þ,y

� �
m l

*ðrÞ
j ðf̂i�1

j ÞjL
*ðrÞ
j�1ðf̂

i�1
j�1Þ,f̂i�1

j

� �
2
4

3
5

8<
:

9=
;, ð38Þ

where fl*ðrÞ
j ðf̂i�1

j Þg
i�1
j¼1 denotes a trajectory drawn from the sequence of impor-

tance samplers associated with LðWi�1; yÞ, and l
*ðrÞ
i ðyÞ is a random draw from the

conditional density pðl*
i jWi�1, L

*ðrÞ
i�1 ðf̂

i�1
i�1Þ,yÞ. Then, the sequence of filtered esti-

mates is computed by rerunning the complete EIS algorithm for every function

Wðl*
i Þ and for every i (from 1 to n).

The SCI residuals of the kth process are computed on the basis of the
trajectories drawn from the sequence of auxiliary samplers associated with

LðW ; yÞ, that is,

L̂k,ðrÞ
i :¼

Ztk
i

tk
i�1

�̂k,ðrÞðuÞdu ¼
XNðtk

i Þ�1

j¼Nðtk
i�1
Þ
�

*ðrÞ
j ðf̂n

j Þ
h is*

k

Ztjþ1

tj

�̂o,kðuÞdu, ð39Þ
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and are computed for each of the R sequences separately. Under correct model

specification, the resulting residuals L̂k,ðrÞ
i should be i.i.d. exp(1). Hence, model

evaluations can be done by testing the dynamical and distributional properties of

the residual series using, for example, Ljung-Box statistics or a test against over-

dispersion. Engle and Russell (1998) proposed a test against excess dispersion

based on the asymptotically normal test statistic
ffiffiffiffiffiffiffiffiffiffi
nk=8

p
ŝ2

Lk,ðrÞ , where nk denotes

the number of points associated with the kth series and ŝ2

Lk,ðrÞ denotes the empiri-

cal variance of the residual series.

4 IS THERE A COMMON FACTOR IN PRICE INTENSITIES?

We apply the SCI model to study price intensities. A price intensity is defined as

the intensity with respect to the time between cumulative absolute price changes

of a given size (the so-called price durations). According to Engle and Russell
(1997), a series of price durations is generated by thinning the process according

to the following rule:

(i) Retain point i ¼ 1.

(ii) Retain point i, i > 1, if jpi � pi0 j � dp,

where i0, with i0<i, indexes the most recently selected point of the process and pi

denotes the price (or midquote) at observation i. The symbol dp represents the

fixed size of the underlying cumulative absolute price change and is chosen

exogenously. The use of price durations opens up alternative ways of estimating

volatility and price change risks [Engle and Russell (1997), Gerhard and Hautsch

(2002)]. In contrast to a generalized autoregressive conditional heteroskedasticity-
type model where one aggregates over time, here, the aggregation scheme is

based on the price (or midquote) process itself. Hence, by definition, duration-

based volatility estimators account for time structures in the price process and are

of particular interest whenever an investor is able to determine his risk in terms

of a certain price movement. On the basis of price durations, it is possible to

estimate first passage times in the price process, that is, the time until a certain

price limit is exceeded. Equivalently, price durations allow for the quantification

of the risk for a given price change within a particular time interval. Furthermore,
a price intensity is closely linked to the instantaneous price change volatility as

given by [Engle and Russell (1998)]

~s2ðtÞ :¼ lim
D#0

1

D
E

pðtþ DÞ � pðtÞ
pðtÞ

� 
2
" �����F t

#
, ð40Þ

where pðtÞ denotes the price at t. Equation (40) can be formulated in terms of the

intensity function regarding the process of dp-price changes. Denoting the count-

ing process associated with the arrival times of cumulated absolute dp-price

changes by NdpðtÞ, then, the dp-price change instantaneous volatility is given by
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~s2
ðdpÞðtÞ :¼ lim

D#0

1

D
Pr jpðtþ DÞ � pðtÞj � dpjF t½ � � dp

pðtÞ

� �2

¼ lim
D#0

1

D
Pr ½Ndpðtþ DÞ �NdpðtÞ� > 0jF t

� �
� dp

pðtÞ

� �2

:¼�dpðt;F tÞ �
dp

pðtÞ

� �2

, ð41Þ

where �dpðt;F tÞ denotes the corresponding dp-price change intensity function.

Hence, Equation (41) allows for a continuous picture of volatility over time.
The goal of this empirical study is to apply the SCI model to analyze price

intensities of several stocks and to test for the presence of a common underlying

factor. Moreover, from an econometric viewpoint, we are interested in the ques-

tion whether the inclusion of a joint component improves the goodness-of-fit and

allows us to capture the interdependences between the individual processes in a

more parsimonious way.

We use price durations generated from a sample consisting of five actively traded

NYSE stocks—AOL, IBM, Coca-Cola, JP Morgan, and AT&T—during the period
from January 2, 2001, to 31 May, 2001. These stocks belong to different sectors and

thus represent a part of the cross-section of the market. The generation of the price

durations is performed according to the procedure described above. However, to

avoid biases caused by the bid-ask bounce [Roll (1984)], we do not use prices but the

midquote between the best ask and bid prices. Furthermore, to apply comparable

aggregation schemes, we computed the individual price durations based on multiples

of the average size of absolute trade-to-trade midquote changes of the corresponding

stock. Using a multiple of 20 (i.e., dp corresponds to 20 times the average absolute
trade-to-trade midquote change) provides us an aggregation level dp of $0.225,

$0.463, $0.086, $0.196, and $0.193 for AOL, IBM, Coca-Cola, JP Morgan, and

AT&T, respectively. Overnight spells, as well as all trades before 09:30 and after

16:00, are removed. Table 1 summarizes the descriptive statistics of the particular

price duration series. We observe average price durations within the range of 12–20

minutes, which are associated with an intraday volatility measured at a relatively

high frequency. Moreover, it turns out that the individual price durations are

overdispersed and strongly autocorrelated. Figure 6 shows the intraday seasonality
functions of the individual price durations, estimated based on cubic spline func-

tions using 30-minute nodes. It is apparent that the individual seasonality patterns

are relatively similar and reveal the well-known inverse U shape.

The multivariate price intensity associated with the five stocks is modeled

using a five-dimensional SCI process. To reduce the computational burden and

the number of parameters to be estimated, we restrict the multivariate observation-

driven dynamics to SCI(1,1) specifications. Furthermore, we do not allow for

interdependences in the baseline intensity functions between the individual fun-
ctions, that is, we set pk

r ¼ 1 and kk
r ¼ 0, 8k 6¼ r in Equation (8), and restrict B to be
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a diagonal matrix.11 Finally, motivated by the similarity of the estimated intraday

seasonality patterns revealed by Figure 6, we estimate only one common season-

ality function for all five processes. It is specified in terms of a linear spline

function given by

hkðtÞ ¼ hðtÞ ¼ 1þ
XM
m¼1

nj½tðtÞ � tj� � ft>tjg , ð42Þ

where tðtÞ denotes the time of day at t, tj , j ¼ 1,…,M denote the M nodes within

a trading day and nj the corresponding parameters. In our study, we use six

nodes dividing the trading hours from 09:30 to 16:00 into equal-sized time

intervals. For numerical reasons, we standardize the particular series by the
average duration mean of the pooled process. Note that this is only a matter of

scaling and does not change the order of the points.

The SCI models are estimated using the EIS technique discussed in Section 3.

In the ML-EIS procedure, we use R ¼ 50 Monte Carlo replications, whereas the

efficiency steps in the algorithm are repeated five times. In the first iteration, we

start with the TSE normal importance sampler. The standard errors are computed

based on the inverse of the estimated Hessian.

Table 2 summarizes the estimation results of four SCI specifications with
unrestricted innovation impact vectors Ak.12 As a starting point, we estimate a

Table 1 Descriptive statistics

AOL IBM Coca-Cola JP Morgan AT&T

Number of observations 2802 2231 1763 3121 2678

Mean 836.71 1028.53 1257.45 739.09 867.37

Standard deviation 1097.64 1473.56 1544.57 1058.13 1245.87

r1 0.24 0.26 0.13 0.22 0.25

r2 0.17 0.17 0.15 0.19 0.18

r3 0.11 0.08 0.07 0.12 0.11

LB(20) 510.64 439.50 183.81 456.69 506.33

Descriptive statistics and Ljung-Box statistics of price durations for the AOL, IBM, Coca-Cola, JP Morgan,

and AT&T stock traded at the NYSE. Sample period from January 2, 2001, to May 31, 2001. The size of the

absolute cumulative price changes corresponds to the average absolute trade-to-trade midquote change

multiplied by 20 and is given by $0.225, $0.463, $0.086, $0.196, and $0.193 for AOL, IBM, Coca-Cola, JP

Morgan, and AT&T, respectively. The descriptive statistics are the number of observations, the mean and

standard deviation of the price durations as well as the autocorrelations of order 1–3, and the corre-

sponding Ljung-Box statistic of order 20. Descriptive statistics in seconds. Overnight spells are ignored.

11 Estimating an unrestricted B would increase the computational burden considerably. However, preliminary

studies show that cross-effects in baseline intensities and persistence terms are typically relatively weak.
12 We only report the estimation results based on specification (14) for the SCI innovation term ei . The

alternative specification (15) provides qualitatively similar results, but it slightly underperforms the

competing form in terms of its ability to capture the dynamic properties of the data.

474 Journal of Financial Econometrics



Figure 6 Seasonality functions of price durations for the AOL, IBM, Coca-Cola, JP Morgan, and AT&T stock traded at the NYSE. Sample period from
January 2, 2001, to May 31, 2001. The size of the absolute cumulative price changes corresponds to the average absolute trade-to-trade midquote change
multiplied by 20 and is given by $0.225, $0.463, $0.086, $0.196, and $0.193 for AOL, IBM, Coca-Cola, JP Morgan, and AT&T, respectively. The estimations
are based on cubic splines based on 30-minute nodes. The horizontal axes display the time of the day. The vertical axis measures the length of durations
in seconds.
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Table 2 Stochastic conditional intensity (SCI) models with unrestricted innovation parameters Ak

A B C D

Estimates p-value Estimates p-value Estimates p-value Estimates p-value

Baseline intensity parameters

o1 –0.73 0.00 –0.46 0.00 –0.73 0.00 –0.76 0.00

o2 –1.10 0.00 –0.81 0.00 –1.11 0.00 –1.13 0.00

o3 –1.38 0.00 –1.12 0.00 –1.30 0.00 –1.33 0.00

o4 –0.48 0.00 –0.21 0.01 –0.44 0.00 –0.47 0.00

o5 –0.74 0.00 –0.47 0.00 –0.70 0.00 –0.73 0.00

p1 1.29 0.00 1.34 0.00 1.40 0.00 1.39 0.00

p2 1.25 0.00 1.31 0.00 1.36 0.00 1.36 0.00

p3 1.31 0.00 1.36 0.00 1.36 0.00 1.37 0.00

p4 1.29 0.00 1.34 0.00 1.36 0.00 1.36 0.00

p5 1.33 0.00 1.37 0.00 1.40 0.00 1.41 0.00

k1 0.04 0.00 0.03 0.00 0.03 0.00 0.03 0.00

k2 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

k3 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

k4 0.08 0.00 0.06 0.00 0.06 0.00 0.06 0.00

k5 0.06 0.00 0.05 0.00 0.05 0.00 0.04 0.00

Innovation parameters

a1
1 0.11 0.00 0.12 0.00 0.07 0.00 0.07 0.00

a1
2 0.04 0.00 –0.00 0.69 0.01 0.27 0.01 0.25

a1
3 0.05 0.00 –0.00 0.94 0.02 0.03 0.02 0.03

a1
4 0.05 0.00 0.01 0.36 0.03 0.01 0.03 0.01

a1
5 0.02 0.12 –0.04 0.00 –0.01 0.38 –0.01 0.36

a2
1 0.02 0.12 –0.03 0.08 –0.00 0.73 –0.00 0.93

a2
2 0.13 0.00 0.11 0.00 0.10 0.00 0.10 0.00

a2
3 0.03 0.01 –0.01 0.27 0.01 0.32 0.01 0.29

a2
4 0.04 0.00 –0.01 0.36 0.02 0.06 0.02 0.04

a2
5 0.03 0.01 –0.02 0.14 0.01 0.38 0.01 0.30
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a3
1 0.02 0.10 –0.03 0.10 0.01 0.60 0.00 0.73

a3
2 0.02 0.12 –0.01 0.32 0.01 0.47 0.01 0.59

a3
3 0.10 0.00 0.07 0.00 0.09 0.00 0.08 0.00

a3
4 0.03 0.00 0.01 0.47 0.02 0.03 0.02 0.04

a3
5 0.04 0.00 0.01 0.43 0.03 0.03 0.02 0.04

a4
1 0.05 0.00 0.01 0.39 0.02 0.04 0.02 0.05

a4
2 0.05 0.00 0.01 0.62 0.03 0.01 0.03 0.01

a4
3 0.02 0.04 –0.03 0.01 0.00 0.76 0.00 0.85

a4
4 0.10 0.00 0.09 0.00 0.06 0.00 0.06 0.00

a4
5 0.05 0.00 –0.00 0.88 0.02 0.02 0.02 0.03

a5
1 0.05 0.00 –0.01 0.60 0.03 0.03 0.03 0.03

a5
2 0.05 0.00 –0.00 0.79 0.02 0.05 0.02 0.06

a5
3 0.06 0.00 0.01 0.28 0.04 0.00 0.04 0.00

a5
4 0.05 0.00 –0.01 0.46 0.03 0.01 0.03 0.01

a5
5 0.14 0.00 0.09 0.00 0.10 0.00 0.10 0.00

Persistence parameters

b11 0.98 0.00 0.89 0.00 0.98 0.00 0.98 0.00

b22 0.99 0.00 0.96 0.00 0.98 0.00 0.99 0.00

b33 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00

b44 0.98 0.00 0.93 0.00 0.99 0.00 0.99 0.00

b55 0.98 0.00 0.96 0.00 0.98 0.00 0.98 0.00

Seasonality parameters

s1 –1.45 0.00 –1.50 0.00 –1.60 0.00 –1.59 0.00

s2 1.13 0.00 1.13 0.00 1.28 0.00 1.27 0.00

s3 0.15 0.05 0.20 0.04 0.16 0.12 0.16 0.14

s4 0.41 0.00 0.35 0.00 0.33 0.00 0.35 0.00

continued
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Table 2 (continued)

A B C D

Estimates p-value Estimates p-value Estimates p-value Estimates p-value

s5 –0.03 0.74 –0.03 0.67 –0.03 0.80 –0.07 0.55

s6 0.66 0.00 0.46 0.00 0.52 0.00 0.55 0.00

Latent parameters

a* 0.98 0.00

a	1 0.92 0.00 0.92 0.00

a	2 0.80 0.00 0.82 0.00

a	3 0.64 0.00 0.65 0.00

a	4 0.60 0.00 0.57 0.00

s* 0.09 0.00

s	1 0.28 0.00 0.28 0.00

s	2 0.27 0.00 0.27 0.00

s	3 0.16 0.00 0.17 0.00

s	4 0.21 0.00 0.22 0.00

s	5 0.22 0.00 0.24 0.00

u	1 –0.16 0.71

u	2 0.18 0.83

u	3 0.29 0.76

u	4 –0.07 0.95

u	5 –0.83 0.45

u	6 –0.82 0.40

Log likelihood –30,260 –29,562 –29,545 –29,536

Bayes information criterion –30,501 –29,812 –29,828 –29,848

ML(-EIS) estimates and corresponding p-values of five-dimensional SCI(1,1) models for the intensities of price durations of the stocks of (1)AOL, (2)IBM, (3)Coca-Cola, (4)JP

Morgan, and (5)AT&T. Baseline intensity functions are specified in terms of individual univariate Burr hazard functions. The innovation impact vectors Ak are fully

unrestricted, whereas B is restricted to be a diagonal matrix. The innovation term is specified according to (14). One joint spline function is specified for all processes based

on six equally spaced nodes between 09:30 and 16:00. Standard errors are based on the inverse of the estimated Hessian. The time series are re-initialized at each trading day.
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Diagnostics A B C D

AOL

Mean of L̂i 0.98 0.98 0.98 0.98

Standard deviation of L̂i 1.04 1.04 1.05 1.05

LB(20) of L̂i 31.82** 26.13 21.29 21.25

Excess dispersion 1.63 1.69* 1.79* 1.76

IBM

Mean of L̂i 0.97 0.96 0.97 0.97

Standard deviation of L̂i 1.04 1.03 1.02 1.03

LB(20) of L̂i 40.17*** 34.02*** 1.42** 30.78*

Excess dispersion 1.24 1.01 0.82 0.87

Coca-Cola

Mean of L̂i 0.95 0.95 0.95 0.95

Standard deviation of L̂i 1.00 1.02 1.01 1.01

LB(20) of L̂i 40.13*** 39.76*** 38.49*** 37.19**

Excess dispersion 0.12 0.54 0.31 0.33

JP Morgan

Mean of L̂i 0.98 0.98 0.98 0.98

Standard deviation of L̂i 1.01 1.00 1.01 1.00

LB(20) of L̂i 42.31*** 32.07* 35.67** 35.06**

Excess dispersion 0.37 0.39 0.38 0.37

AT&T

Mean of L̂i 0.97 0.97 0.97 0.97

Standard deviation of L̂i 1.04 1.04 1.05 1.05

LB(20) of L̂i 22.14 23.76 17.60 17.51

Excess dispersion 1.75* 1.62 1.88* 1.88*

Average diagnostics (mean, standard deviation, Ljung-Box statistic, as well as excess dispersion test) over all trajectories of SCI residuals L̂k,ðrÞ
i . ***, **, and * denotes the

significance at the 1, 5, and 10% levels, respectively.
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pure ACI(1,1) specification, see Panel A in the table. As indicated by the highly

significant estimates of the parameters p and k, the baseline intensities reveal a
nonmonotonic pattern that is increasing in the short run and decreasing in the

long run. Furthermore, the estimates of ak
k reveal a significant impact of the

innovation on the k-type intensity if the last event was of type k as well. These

effects are stronger than the (mostly significant) positive cross-impacts between

the individual processes ðam
k , k 6¼ mÞ, which provide evidence for positive

spillover effects in the volatility processes. However, no distinct lead–lag rela-

tions are observable. Moreover, as indicated by the estimates of the diagonal

elements of B, we find a high degree of persistence in the processes. Panel B
shows the estimates of the basic SCI specification, where the autoregressive

parameter a* is assumed to be constant, and the latent standard deviations

s* ¼ s*
j , j ¼ 1,…,5, are identical for all processes. Three major findings are appar-

ent. First, an autoregressive common component is clearly identifiable because

both latent parameters a* and s* are highly significant. The estimate of a*, being

close to one, reveals that the joint factor is highly persistent. Second, the inclusion

of the latent component leads to a strong increase of the model’s goodness-of-fit

as indicated by the log likelihood and the Bayes information criterion (BIC).
Third, the introduction of the latent component leads to a reduction in the

magnitudes of the persistence parameters bkk. We also observe that most of the

innovation parameters associated with cross-effects, am
k , k 6¼ m, become insignif-

icant, whereas the direct effects remain significant and decrease only slightly

when compared with the estimates in Panel A. Furthermore, the model diagnos-

tics show that the SCI model captures the dynamics in a better way than the pure

ACI model leading to a reduction of the Ljung-Box statistics. These results clearly

provide evidence for the existence of an underlying joint factor capturing com-
mon underlying dynamics and interdependences between the individual pro-

cesses. This result strongly confirms the underlying idea of our model.

Panel C shows the estimates of a more flexible SCI specification allowing for

process-specific influences of the latent component through the introduction of

process-specific scaling parameters s*
k (for identification, we impose that the sign

of s*
1 is positive). Indeed, we observe that the impact of the common component

on the individual processes varies to some extent. Furthermore, we allow the

strength of the serial dependence in the latent component to depend on the time
elapsed since the last price event as shown in Equation (6). To maintain the

computational burden under control, we fix the thresholds �xr exogenously. The

thresholds are defined in terms of percentages with respect to the average

duration between consecutive price events in the pooled process. We define

four categories associated with the thresholds 0.5, 1.0, and 2.0. It turns out that

the serial dependence in the latent component significantly declines with the

length of past durations. However, compared with specification B, the overall

level of serial dependence in the latent factor is reduced, whereas the persistence
in the observation-driven component is increased. Because a decline of the serial

dependence implicitly reduces the unconditional variance of the latent
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component, we observe a counterbalancing effect by an increase of the scaling

parameters s*
k. However, as indicated by the BIC, the extra flexibility implied by

specification C is not supported by the data. Panel D shows the estimates of a

specification that extends C by the inclusion of heteroskedastic latent variances

that are specified according to Equation (5) based on six nodes associated with

equal-size intervals between 09:30 and 16:00. We observe that the seasonality

effects are neither individually nor collectively significant. Thus, we find no

evidence for seasonality effects driving the variance of the latent processes.

Table 3 summarizes the estimates of restricted SCI models. In specification E,

we exclude any dynamics from the observation-driven component, which
includes only a baseline component (and the seasonal component). In this case,

the joint latent component has to capture the dynamics of all individual processes,

which is associated with a significant increase of the parameters a*
r . Actually, we

observe that all regime-dependent autoregressive parameters are driven toward

one indicating a quite high persistence. However, again this induces a counter-

balancing effect resulting in a significant decline of the variance scaling para-

meters s*
k. Interestingly, it turns out that, according to the BIC, a specification

with only one common parameter-driven dynamic but no observation-driven
dynamics clearly outperforms the basic ACI model (specification A in Table 2)

in terms of goodness-of-fit. This confirms the notion of a common component as

a major driving force of the multivariate system. Nevertheless, we observe that

the latent factor solely is not sufficient to capture completely the dynamics of the

multivariate intensity. Therefore, in terms of the residual diagnostics, specifica-

tion E underperforms a fully parameterized SCI and ACI specification. This

illustrates the usefulness of a combination of parameter-driven and observa-

tion-driven dynamics and confirms the underlying idea of the model.
Motivated by the findings that the inclusion of the latent component signifi-

cantly reduces the cross-effects in the innovations, Panels F–H show restricted

specifications based on diagonal parameterizations of the innovation vectors, that

is, am
k ¼ 0, 8k 6¼ m. As indicated by the BIC values, this set of restrictions is clearly

supported by the data and results in much more parsimonious models. The

residual diagnostics indicate that these specifications are not performing worse

than those reported in Table 2 in capturing the dynamical and distributional

properties in the data. Nevertheless, for all models the null hypothesis of no
serial correlation still has to be rejected for three stocks. The best goodness-of-fit

in terms of the BIC is obtained for specification F allowing for no process-specific

impacts of the latent component and no regime-switching autoregressive para-

meter. This result indicates that this extra flexibility is not supported by the data.

Figures 7 and 8 show the ACFs of the estimated price intensities of the

individual stocks. They are computed as the average empirical CACFs based on

the estimated intensity trajectories implied by specification B in Table 2. We show

the estimates for the plain intensities �kðt;F tÞ, and, correspondingly for the
seasonally adjusted intensities �kðt;F tÞ=hkðtÞ. The plots confirm our estimation

results and provide evidence for strong, positive autocorrelations of the
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Table 3 Stochastic conditional intensity (SCI) models with diagonal innovation parameters Ak

E F G H

Estimates p-value Estimates p-value Estimates p-value Estimates p-value

Baseline intensity parameters

o1 –0.33 0.00 –0.44 0.00 –0.56 0.00 –0.57 0.00

o2 –0.59 0.00 –0.76 0.00 –0.90 0.00 –0.91 0.00

o3 –0.95 0.00 –1.10 0.00 –1.21 0.00 –1.19 0.00

o4 –0.08 0.26 –0.19 0.03 –0.31 0.00 –0.31 0.00

o5 –0.29 0.00 –0.45 0.00 –0.58 0.00 –0.56 0.00

p1 1.31 0.00 1.31 0.00 1.33 0.00 1.34 0.00

p2 1.28 0.00 1.29 0.00 1.31 0.00 1.32 0.00

p3 1.33 0.00 1.34 0.00 1.36 0.00 1.35 0.00

p4 1.31 0.00 1.32 0.00 1.34 0.00 1.34 0.00

p5 1.34 0.00 1.35 0.00 1.37 0.00 1.36 0.00

k1 0.03 0.00 0.03 0.00 0.03 0.00 0.02 0.00

k2 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

k3 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

k4 0.06 0.00 0.06 0.00 0.06 0.00 0.06 0.00

k5 0.05 0.00 0.04 0.00 0.04 0.00 0.04 0.00

Innovation parameters

a1
1 0.09 0.00 0.08 0.00 0.07 0.00

a2
2 0.12 0.00 0.11 0.00 0.11 0.00

a3
3 0.05 0.00 0.05 0.00 0.06 0.00

a4
4 0.07 0.00 0.07 0.00 0.07 0.00

a5
5 0.08 0.00 0.07 0.00 0.08 0.00

Persistence parameters

b11 0.74 0.00 0.85 0.00 0.83 0.00

b22 0.86 0.00 0.90 0.00 0.88 0.00

b33 0.94 0.00 0.95 0.00 0.95 0.00

b44 0.91 0.00 0.94 0.00 0.93 0.00
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b55 0.87 0.00 0.91 0.00 0.91 0.00

Seasonality parameters

s1 –1.53 0.00 –1.49 0.00 –1.56 0.00 –1.54 0.00

s2 1.15 0.00 1.13 0.00 1.20 0.00 1.19 0.00

s3 0.23 0.01 0.19 0.06 0.19 0.09 0.18 0.10

s4 0.32 0.00 0.36 0.00 0.34 0.00 0.34 0.00

s5 –0.05 0.45 –0.02 0.86 –0.03 0.77 –0.04 0.70

s6 0.45 0.00 0.47 0.00 0.48 0.00 0.49 0.00

Latent parameters

a* 0.97 0.00

a	1 0.98 0.00 0.97 0.00 0.97 0.00

a	2 0.99 0.00 0.96 0.00 0.97 0.00

a	3 0.97 0.00 0.86 0.00 0.87 0.00

a	4 0.99 0.00 0.91 0.00 0.92 0.00

s* 0.10 0.00 0.14 0.00

s	1 0.09 0.00 0.15 0.00

s	2 0.10 0.00 0.15 0.00

s	3 0.08 0.00 0.11 0.00

s	4 0.10 0.00 0.14 0.00

s	5 0.09 0.00 0.12 0.00

Log likelihood –29,766 –29,584 –29,577 –29,573

Bayes information criterion –29,908 –29,740 –29,747 –29,762

ML(-EIS) estimates and corresponding p-values of five-dimensional SCI(1,1) models for the intensities of price durations of the stocks of (1) AOL, (2) IBM,

(3) Coca-Cola, (4) JP Morgan, and (5) AT&T. Baseline intensity functions are specified in terms of individual univariate Burr hazard functions. The innovation

impact vectors Ak are restricted to a diagonal structure, whereas B is a diagonal matrix. The innovation term is specified according to (14). One joint spline

function is specified for all processes based on six equally spaced nodes between 09:30 and 16:00. Standard errors are based on the inverse of the estimated

Hessian. The time series are re-initialized at each trading day.
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Diagnostics E F G H

AOL

Mean of L̂i 0.99 0.98 0.98 0.98

Standard deviation of L̂i 1.06 1.05 1.05 1.05

LB(20) of L̂i 65.94*** 24.93 24.26 24.63

Excess dispersion 2.42** 2.03* 2.07* 2.11**

IBM

Mean of L̂i 0.97 0.97 0.97 0.97

Standard deviation of L̂i 1.03 1.05 1.04 1.04

LB(20) of L̂i 122.85*** 33.48** 31.50** 31.29**

Excess dispersion 1.17 1.57 1.33 1.30

Coca-Cola

Mean of L̂i 0.95 0.95 0.95 0.95

Standard deviation of L̂i 1.04 1.03 1.02 1.01

LB(20) of L̂i 65.68*** 38.39*** 35.76** 34.29**

Excess dispersion 1.09 0.79 0.63 0.38

JP Morgan

Mean of L̂i 0.98 0.98 0.98 0.98

Standard deviation of L̂i 1.00 1.02 1.01 1.01

LB(20) of L̂i 55.49*** 33.88** 33.49** 33.56**

Excess dispersion 0.43 0.64 0.56 0.53

AT&T

Mean of L̂i 0.98 0.97 0.97 0.97

Standard deviation of L̂i 1.06 1.06 1.06 1.06

LB(20) of L̂i 166.97*** 24.06 20.31 19.43

Excess dispersion 2.19** 2.36** 2.24** 2.30**

Average diagnostics (mean, standard deviation, Ljung-Box statistic, as well as excess dispersion test) over all trajectories of SCI residuals L̂k,ðrÞ
i . ***, **, and * denotes

significance at the 1, 5, and 10% levels, respectively.

Table 3 (continued)
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Figure 7 Empirical autocorrelation functions (ACF) of the estimated price intensities of the stocks AOL, IBM, Coca-Cola, JP Morgan, and AT&T traded
at the NYSE. The ACF corresponds to the average empirical ACF based on the estimated intensity trajectories implied by specification B in Table 2. The
left picture is based on the estimates of the (nonadjusted) intensities �kðt;F tÞ, whereas the right picture is based on the estimates of seasonally adjusted
intensities �kðt;F tÞ=hkðtÞ.
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Figure 8 Empirical cross-autocorrelation functions (CACFs) between the estimated price intensities of the AOL stock with those of the IBM, Coca-Cola,
JP Morgan, and AT&T stock traded at the NYSE. The CACF corresponds to the average empirical CACF based on the estimated intensity trajectories
implied by specification B in Table 2. The left picture is based on the estimates of nonadjusted intensities �kðt;F tÞ, whereas the right picture is based on
the estimates of seasonally adjusted intensities �kðt;F tÞ=hkðtÞ.
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individual intensity components and cross-autocorrelations between them.

Figures 9 and 10 show the time-series plots of the average intensity realizations
as well as of the latent component based on the corresponding estimated trajec-

tories. Figures 11 and 12 depict the corresponding plots of the estimated dp-price

change volatilities ~s2
ðdpÞðtÞ. Whereas the plots in Figures 9 and 11 are dominated

by deterministic intraday seasonalities, the plots in Figures 10 and 12 allow for a

more clear-cut picture. We observe clear evidence for volatility clustering and

significant time-varying volatility. Furthermore, significant co-movements in the

individual volatility processes are apparent. Thus, periods of high and low

volatility occur simultaneously across the stocks. This is particularly evident for
volatility jumps. The bottom panel of Figure 12 clearly illustrates that the latent

component captures joint movements in the individual price intensities and

volatilities.

5 CONCLUSIONS

In this article, we introduce a new type of intensity model for dynamic point

processes. The main idea is to specify the intensity function based on two com-

ponents—an observation-driven autoregressive process that is updated by obser-

vable innovations and a dynamic latent factor that is updated by unobservable

innovations. The observation-driven component is parameterized according to
the ACI model proposed by Russell (1999). Hence, the SCI model extends the ACI

model by allowing for a joint autoregressive factor and thus combines the features

of observation-driven models and parameter-driven models. Moreover, the SCI

model can be interpreted as a dynamic extension of a doubly stochastic Poisson

process. The latent factor is specified as a log-linear model based on a Gaussian

AR(1) process. In this sense, the model resembles a stochastic volatility model and

enriches an intensity function with a latent factor process. The latent factor serves

as an unobservable component that jointly influences the individual intensity
components and drives the joint dynamics of the multivariate system. Such a

factor can be economically interpreted as a variable that captures the unobserva-

ble information flow driving the overall market activity. Because conditional and

unconditional moments typically cannot be computed analytically, we provide

simulation results to provide insights into the model properties, as well as into

those of the implied duration processes.

Because the latent dynamic process is not observable, the model cannot be

estimated by standard maximum likelihood techniques. We use the EIS method
proposed by Richard (1998), which has proven to be highly efficient for very

accurate Monte Carlo evaluations of the likelihood depending on high-dimen-

sional interdependent integrals. Based on this technique, it is possible to compute

simulated residuals which are the basis of diagnostic tests.

We apply the proposed model to price duration series of five blue-chip stocks

traded at the NYSE. It turns out that the introduction of a parameter-driven

component in the ACI model leads to a better model performance, witnessed by

a clear increase of the maximized likelihood and the BIC, whereas diagnostic
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Figure 9 Time-series plots of the estimated price intensities �kðt;F tÞ of the AOL, IBM, Coca-Cola, JP Morgan, and AT&T stock traded at the NYSE as
well as of the latent component �*

i (from top to down). The plots show the average realizations based on the estimated trajectories implied by
specification B in Table 2. The x-axis denotes the corresponding months in 2001.
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Figure 10 Time-series plots of the estimated seasonally adjusted price intensities �kðt;F tÞ=hkðtÞ of the AOL, IBM, Coca-Cola, JP Morgan, and AT&T
stock traded at the NYSE as well as of the latent component �*

i (from top to down). The plots show the average realizations based on the estimated
trajectories implied by specification B in Table 2. The x-axis denotes the corresponding months in 2001.
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Figure 11 Time-series plots of the estimated price volatilities ~s2
ðdpÞðtÞ (multiplied by 10,000) of the AOL, IBM, Coca-Cola, JP Morgan, and AT&T stock

traded at the NYSE as well as of the latent component �*
i (from top to down). The plots show the average realizations based on the estimated trajectories

implied by specification B in Table 2. The x-axis denotes the corresponding months in 2001.
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Figure 12 Time-series plots of the estimated seasonally adjusted price volatilities ~s2
ðdpÞðtÞ=hkðtÞ (multiplied by 10,000) of the AOL, IBM, Coca-Cola, JP

Morgan, and AT&T stock traded at the NYSE as well as of the latent component �*
i (from top to down). The plots show the average realizations based

on the estimated trajectories implied by specification B in Table 2. The x-axis denotes the corresponding months in 2001.
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checks indicate a better specification. Furthermore, the latent component captures

a substantial part of the interdependences between the individual processes and
leads to a more parsimonious specification of the five-dimensional system. Hence,

our empirical results provide clear evidence for the existence of a common force

driving the price intensities. In this sense, the SCI model looks like a useful tool to

model financial point processes in a relatively parsimonious and flexible way and

to get deeper insights into the joint market dynamics of trading activity.

Other empirical applications are certainly an item on the research agenda.

Another item is the use of the SCI model in conjunction with models for the marks

attached to the points, such as return volatilities. This would lead to a multi-
variate generalization of the univariate work of Engle (2000), using intensity

models rather than duration models.

Received October 10, 2005; revised March 27, 2006; accepted March 29, 2006
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