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ABSTRACT 

 
 
 
In 1974, Robert Merton proposed a model for assessing the credit risk of a company by 

characterizing the company’s equity as a call option on its assets. This gave rise to 

Capital Structure theory based on a Gaussian setting. In this paper, we use a non-

Gaussian setting to come up with a fair valuation of company’s credit risk. The non-

Gaussian framework has been set up by L. Borland (Quantitative Finance, 2, 415-431, 

2002) using a closed form option pricing solution to predict European call prices which 

fit well to empirical market data over several maturities. Using the above mentioned 

model and the credit default swap data, we test our implementation of the adapted Merton 

model and further the Capital Structure Arbitrage theory in a non-Gaussian setting. 
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1. Capital Structure Arbitrage 
 

The Capital structure of a company consists of its Assets which are the sum of its Debt 

and Equity. In 1958, Modigliani & Miller came up with a theory stating that under certain 

basic assumptions, it doesn’t matter how a company finances its projects – be it debt, 

equity or a combination of the two, i.e. altering its leverage ratio (D/E)    

 

1.1  Debt 

 

Bond holders of a company have priority over equity holders if a company were to 

default. Debt has different levels of seniority and this determines the order in which debt 

holders get paid. Eg. Straight debt, Convertible debt, etc. When calculating the value of a 

company’s debt, certain problems arise because there are no observable markets for debt, 

and the book value may not be a close reflection of a debt’s market value. 

 

1.2  Equity 

 

Equity holders get paid only after debt has been repaid. Unlike debt, observable markets 

exist for equity. Equity holders too have different priority levels like preferred stock 

holders, common stock holders, warrant holders, etc. 

 

1.3  Capital Structure Arbitrage 

 

Why does Capital Structure Arbitrage exist?  Debt should be priced “fairly” to reflect the 

true state of the company. There is no fair market valuation of most debt instruments. 

Furthermore, there is no “correct” market valuation of a company’s assets.  

 

Potential arbitrage opportunities exist if market price of debt cannot be “justified” by its 

capital structure. 
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Capital Structure Arbitrage Outline: 

 

A trader believes that debt of a company is under priced. So, he purchases the “cheap” 

corporate bonds and hedges his position by purchasing puts on the stocks. If the company 

doesn’t default, he receives the yield on his bond in excess of what he paid for the put 

option. If the company does default, he would receive the strike price minus the 

premium.  

 

 

Asset Value 

Debt 

Liabilities 

Bond holders do not 
participate on the upside 

Asset Value 

Debt 

Premium Liabilities

Put Option 
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2.  Debt Evaluation and Merton Model 
 

 

2.1 Importance of Debt Valuation 

 

The assessment of credit risk has always been important to banks and other financial 

institutions. Recently banks have devoted even more resources to this task. This is 

because regulatory credit-risk capital may be determined using a bank’s internal 

assessments of the probabilities that its counter parties will default. 

 

Since the capital structure of any firm is the sum of debt and equity, a fair valuation for 

debt is essential to make financial markets more transparent and competitive. As long as 

the debt market is not as developed as the equity market, arbitrage opportunities 

stemming from the relative mispricing may exist. This can then be used to take advantage 

of the imperfect debt pricing in the market. If operations are developed to link credit 

market with equity and options markets, then the markets can become stronger and 

appropriate debt risk hedging can be resorted to.  

 

Now, the value of corporate debt depends on three items, namely,  

 

1) The riskless rate of return, as observed from government bonds and very high-

grade corporate bonds. 

2) The terms of reference contained in the indenture to the bond issue. 

3) The probability that the firm may default on commitment to pay back the debt. 

 

The corporate debt is thus risky, in that it is not as risk-free as government bonds and 

there is the chance for default by the firm as it can go bankrupt. The debt holders have 

first priority in the payment whenever the company becomes bankrupt as detailed below: 
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The riskiness of a firm’s debt is evaluated from a combination of credit-ratings of the 

firm which are issued by agencies such as Moody’s, S&P on the one hand, and the credit 

spread information which comes from market corporate debt derivatives (for example 

CDS) on the other. 

 

As the debt market is not as developed as the equity market they also have dissimilar 

liquidities. These factors hint at many potential relative mispricings. A scientific 

approach to debt evaluation is therefore important to understanding the risk structure of 

yield rates and the probability of default of companies. This paves the way for better 

hedging policies that can be adopted by bond market investors and efficient elimination 

of lurking credit arbitrage opportunities. 

 

Debt can be viewed as a written put option on firm’s asset values. This lends itself to 

applying the Black-Schole’s formulation. However, the evaluation of debt in this way is 

complicated by the fact that both debt and asset processes are indiscernible from the 

market. 

 

Merton (1974, [Ref:1]) extends  the Black and Scholes (1973) derivative  pricing 

formulation to propose a simple model of the firm that provides a way of relating credit 

risk to the capital structure of the firm.  
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2.2 Merton’s Model (1974) 

 

Robert C. Merton developed a theory of risk structure of interest rates, which accounts 

for price differentials between bonds to reflect the probability of default [Ref:1]. Merton 

dealt with the theoretical basing of corporate debt pricing as an extension of Black-

Scholes’ general equilibrium theory of derivative pricing. The ability to formulate debt 

price as a function of observable variables is the main attraction of this approach. This 

essentially utilizes the directly observable equity process, by viewing equity as a call 

option on firm’s assets to arrive at the underlying asset process. 

 

In a simplistic case of a non-callable, non-coupon paying single debt issue of a company, 

the equity can be viewed as a European call option on assets, the value of the firm, with a 

strike price of maturity debt value and an expiry equal to the maturity time of the debt. 

Assuming a standard Gauss-Weiner stochastic process for the underlying financial asset, 

the total assets of the company, the observable equity price and volatility can be tied to 

Asset value and volatility through the closed-form solution to the above. The debt being 

(Asset)-(Equity), we have a valuation for the debt. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 Equity Debt 

Assets 

Equity 

Struck at 
Debt Face 
Value 

Asset Value Balance-Sheet
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Under the Merton model, the following assumptions are made: 

 

1) Underlying assets follow lognormal stochastic distribution, with the driver noise 

given by standard normal Weiner process, dz 

2) The value of the firm is invariant to its capital structure as proved by the 

Modigliani-Miller theorem 

3) Short-sales of all assets with full use of the proceeds are allowed, and trading in 

assets takes place continuously. 

4) The term-structure is “flat” and known with “r” being the instantaneous risk-less 

rate of return. There exists an exchange market for borrowing and lending at the 

same rate of interest. 

 

  

 

 

The Merton model considers a scenario where a company has a certain amount of zero-

coupon debt that will become due at a future time T. As stated earlier, the value of the 

firm’s assets follows a lognormal diffusion process with a constant volatility. The firm 

has issued two classes of securities: equity and debt. The equity receives no dividends. 

The debt is a pure discount bond where a payment of D is promised at time T. The 

company defaults if the value of its assets is less than the promised debt repayment at 

time T. The equity of the company is therefore a European call option on the assets of the 

company with maturity T and a strike price equal to the face value of the debt. If at time 

Pr
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µ µ 

Lognormal distribution Normal distribution 
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T, the firm’s asset value exceeds the promised payment, D, the lenders are paid the 

promised amount and the shareholders receive all residual claims to the assets. If the 

asset value is less than the promised payment the firm defaults, the lenders receive a 

payment equal to the asset value, and the shareholders get nothing. 

 

The model can be used to estimate either the risk-neutral probability that the company 

will default or the credit spread on the debt. As inputs, Merton's model requires the 

current value of the company's assets, the volatility of the company’s assets, the 

outstanding debt, and the debt maturity. But as only the equity process can be observed in 

the market, we can derive the underlying asset process from equity and then evaluate debt 

and the credit-spread. 

 

2.2.1 Equity Value and the Probability of Default 

 

Let E represent the value of the firm’s equity and A the value of its assets. Let E0 & A0 be 

the values of E and A today and let ET & AT be their values at time T. In the Merton 

framework the payment to the shareholders at time T, is given by (a call option): 

 

ET = max [AT – D, 0] 

 

The underlying asset follows the following stochastic process, the driver noise being 

given by standard normal Weiner process dz : 

 

dA = µA dt + σAdz 

 

The current equity price, therefore, can be immediately evaluated as a closed form 

solution of the Black-Scholes’ PDE: 

 
E0 = A0N(d1) − De –rT N(d2)  ….. the closed form solution of Black-Scholes’ equation for 

a European call option . 

where 



 8

 

d1  =  (ln (A0 e –rT/D) / (σA√T))   +   0.5σA √T ;    d2 = d1 – 0.5 σA √T 
 

 

where σA is the volatility of the asset value, and r is the risk-free rate of interest, both of 

which are assumed to be constant. If  D*= De –rT is the present value of the promised debt 

payment and if L = D*/ A0   is the  measure of leverage of the firm, then the equity value 

is: 

 
E0 = A0[N(d1) − LN(d2)]  ---------  (1) 

 

It was shown by Jones et al (1984), that as the equity value is a function of the asset 

value, Ito’s lemma can be used to determine the instantaneous volatility of the equity 

from the asset volatility: 

 

E0 σE = (∂E/∂A) A0 σA    

 

where σE is the instantaneous volatility of the company’s equity at time zero. From 

equation (1), this leads to 

 

σE = (σAN(d1))/[N(d1) − LN(d2)] --------  (2) 
 

Equations (1) and (2) allow A0 and σA to be obtained from E0, σE, L and T.  The risk-

neutral probability, P, that the company will default by time T is the probability that 

shareholders will not exercise their call option to buy the assets of the company for D at 

time T. It is given by 

 

P= N(-d2)     ---------  (3) 

 

This depends only on the leverage, L, the asset volatility, σ, and the time to repayment, T. 
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2.2.2 Debt evaluation 

 

As can be seen from above, debt (D) can then be evaluated, knowing that: 

 

A= D + E 
 

we have: 

 
D0= A0[ N(-d1) + LN(d2)] 

 

also, 

 

Credit Spread ≈ y - r = -ln(N(d2)+ N(d1)/L]/T 

 

This credit spread can then be compared with the corporate debt derivatives like Credit 

Default Swaps, where a premium is paid by the protection buyer to the protection seller 

who undertakes to pay the former in case of default by the reference company. 

 

2.3 Shortcomings of Merton model 

 

It is seen that the distributions of empirical returns do not precisely follow a lognormal 

distribution upon which the above results are based. While of great importance and wide 

acceptance, these theoretical option prices do not quite match the observed equity prices. 

The Merton model underestimates the prices of away-from-the-money options. This 

means that the implied volatilities of various strike prices form a convex function, rather 

than the expected flat line. The empirical returns of stock, for example, are seen to have 

fatter tails and skews when compared to the normal distribution. [Ref: 2, Lisa Borland] 
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           3.  The Non-Gaussian approach [Ref:3] 
 

So, given the above shortcomings, several modifications to the Merton model have been 

suggested in an attempt to correct the discrepancies. These approaches are often very 

complicated and mostly ad-hoc. They seldom yielded manageable closed form solutions. 

These approaches vary from the introduction of a stochastic model for the volatility of 

stock price [Hull and White, 2003, Ref:4], to using a Poisson jump diffusion term to 

describe extreme price movements. 

 

Lisa Borland et al of EVA Funds, applied a non-Gaussian modification to the underlying 

asset process which follows a Gaussian stochastic process in the traditional Merton 

model.. This non-Gaussian stochastic process, called the Tsallis distribution, allows for 

statistical feedback. These processes closely match the distributions of returns of stocks 

and currency quotes, as found empirically. In our study, we undertake this approach as 

described in following sections 

 

3.1 Background 

 

The stochastic model derives from a class of processes which have been recently 

developed within the framework of statistical physics, more precisely the very active 

field of Tsallis non-extensive thermo statistics. Lisa Borland applied the power-law 

distributions characteristic of the Tsallis framework for the financial quantities. 
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Figure above: Distributions of log returns for ten Nasdaq high-volume 

stocks. Returns are calculated over 1 min intervals, and are normalized by 

the sample standard deviation. Also shown is the Tsallis distribution of 

index q = 1.43 (solid curve) which provides a good fit to the data. 

[Coutesy: Lisa Borland of EVA funds, 2004] 

 

 

 

Basically, these stochastic processes can be interpreted as if the driving noise follows a 

generalized Weiner process governed by a fat-tailed, skewed Tsallis distribution of ‘fat-

tail’index ‘q’ and ‘skew’ parameter ‘α’. For q=1 and α=1, the standard Gaussian 

stochastic process is recovered. In the above figure, the distribution of high-frequency log 

returns for ten Nasdaq high-volume stocks is plotted, with time scale being 1 minute. The 

returns are normalized by the sample standard deviation. Here, a Tsallis distribution of 

index q=1.43 provides a very good fit to the empirical data [Lisa Borland et al., 2004]. 

Also, it was shown by Lisa Borland that a q = 1.4 model with one value of σ across 

strikes reproduces market prices for options on Japanese Yen futures with expiry dates 

ranging from 17 to 147 days. 

 

 

 

Fat-tails 

Skew 
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3.2 Application of Tsallis distribution to Merton model 

 

Motivated by the good fit between the proposed model class and empirical data, Tsallis 

non-Gaussian stochastic processes have been used to represent movements of the returns 

of underlying stock and thus the underlying asset process. Generalized option pricing 

formulas can then be derived using Black-Scholes’ formulation, so as to be able to obtain 

fair values of derivatives of the underlying. Using these formulas we can expect to get a 

good match with empirical observations of other derivative prices, like in our case, the 

debt. 

 

Adapting the Merton model as explained in Section 2.2, to the Tsallis stochastic process 

for the underlying asset, we have:  

 

1. Asset process:   
 

dA = µA dt + σ(A0)1-α Aα dΩ 

 

where dΩ =  [P(Ω)](1—q)/2dz 

 

and dz is the standard Gaussian Weiner process. As explained earlier ‘α’  is skew 

index and ‘q’ is the entropy index giving fat-tails to the stochastic process. P is the 

conditional probability, incorporating statistical feedback,  with variable Ω 

evolving according to the non-linear Fokker-Planck equation, given below: 

 
 

2. The generalized Black-Scholes’ PDE takes form: 

 

df / dt + rA (df / dA) +  (1/2) (d2 f / dS2) σ2 (A0)2(1-α) A2α P1-q = r f 
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3. Following the Merton approach as in Section 2.2, the current asset value, A0 and 

its volatility, σA are obtained. The debt process along with the credit-spread are 

now tractable. 

 

E0 σE = (∂E/∂A) A0 σA    

A0  = fn(E0, σE,L, r, T)   

Credit Spread = y - r = fn(E0, σE,L, r, T)   

 

4. The sponsor has developed numerical routines to calculate the credit spread, E0 and 

∂E/∂A as functions of A0, σA, r, T, q and  α. These functions were incorporated in 

the development of the optimizing routines. 

 

Our project uses this model to verify that the calculated credit spreads match the 

corresponding quoted CDS spreads. The parameters of ‘q’ and ‘α‘ are adjusted for each 

firm to obtain the best-fit for its historical data of equity, L and CDS. The current credit-

spreads can therefore be calculated and contrasted with current CDS quotes to take 

appropriate positions for either hedging or possible arbitrage. 

 

 

4. Algorithm 
 

In this section, we present an overview of our algorithm. The algorithm allows us to find 

the best match for two important parameters ‘q’ (which specifies the fatness of the tails in 

the asset price distribution) and ‘α’ (the skew of the distribution). We also estimate the 

best match for the asset process, which can then be used to calculate other derivatives 

such as equity and debt more accurately. We begin the section by outlining the input data 

parameters followed by a detail description of the algorithm. We conclude this section 

with an overview of system specifications and scope of future work. 
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In this algorithm, we seek to verify how “fair” the corporate debt instruments are priced 

relative to their equity prices and asset value in the market. For this purpose, we compute 

the Credit Default Swap (CDS) spreads from various data parameters and compare them 

to the available CDS quotes in the market. The q and α parameters are then obtained as a 

best fit to reduce the error between the two CDS values. In this process, we also come up 

with a better approximation to the asset value of the company. 

 

4.1   Input Data Parameters 

 

Several data parameters are used as inputs to compute the CDS value in our algorithm. 

The particulars of data selection are detailed in the DATA section of the report. We 

denote data parameters with symbols within ( ) for ease in understanding the algorithm: 

a) Market CDS quotes (CDSq) 

b) Equity prices (E) 

c) Equity Volatility (σE) 

d) Total book value of assets (A) 

e) Asset Volatility (σA)   

f) Book value of long term debt (D) 

g) Risk free rate (r) 

h) Time to maturity of Debt (T) 

 

4.2   Algorithm 

 

In order to compute the non-Gaussian equity prices (E) and AE ∂∂ / , we use the routine 

provided by our sponsors EVA Inc. In order to get a better approximation of the results 

from these functions, we define leverage ratio L = D/A and a threshold error value Err. 

We are now ready to present the algorithm: 

 

(i) Define the search bounds  as (qmin = 1.01, qmax = 1.67; αmin = 0.01, αmin = 1)     

 

(ii)        Evaluate (σA) by solving the non-linear parity relationship  
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 E (q, α, σA, r, D, T, A)/A = dE/dA(q, α, σA, r, D, T, A)  * (σA/σE)  1 

(The above equation is homogenous of degree zero in A, and so to 

compute the result we can set D = L and A = 1.) The above relation 

becomes: 

E (q, α, σA, r, L, T, 1) = dE/dA(q, α, σA, r, L, T, 1)  * (σA/σE) 

 

(iii)     Update the asset values more accurately using the observed equity prices E       

and the relation : 

    A = E/ E (q, α, σA, r, L, T, 1) 1 

  

(iv)        Calculate CDS  using the above parameters     

  CDS = Spread (q, α, σA, r, D, T, A)1 

 

(v)       Compute Error = ∑ [ CDS  - CDSq ] 2  

 

(vi)        Minimize (Error) with (Error < Err) as the termination condition. Set 

i. Err* = Error; 

ii. q* = q; 

iii. α* = α;     

 

We get the optimal values of q* (fatness), α* (skew) and the least squared error Err* over 

all the data points per sample company. Due to limited computational resources, we were 

able to generate the optimal values with a quantization of 0.05. Even with these 

constraints, we were able to reduce the error to less that one percent in most cases. These 

constraints can be marginalized using higher precision as a future extension of this 

project. 

 

4.3   System Specifications 

 

Next we briefly outline the system specifications used to execute our algorithm: 

a. Microsoft Visual C++ 
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b. Windows XP environment 

c. Red Hat Linux (to test the non-Gaussian routines) 

  

 

5.  Data Collection and Analysis 
 
 
The underlying focus of our project so far has been on implementing the theory of capital 

structure arbitrage in a non-Gaussian setting. As far as the data required for validation is 

concerned, the following are the observables and calculated values that were needed : 

 

5.1  Observables : 

 

• Equity price 

• Equity volatility 

• Time to maturity “T” 

• Total assets 

• Long-term debt 

• Risk-free interest rate 

• Credit Default Swap (CDS) data 

 

5.2  Values to be calculated : 

 

• Q values (Fatness of tails) 

• Alpha values (Skewness) 

• Credit spread 

 

The actual credit spread (from CDS data) is then compared against the calculated credit 

spread, and the error is determined. 
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5.3  Credit Default Swaps Data 

 

The basic advantage of these credit default swaps is that they provide insurance against a 

default by a particular company or sovereign entity. In theory, CDS data are close to the 

credit spread of the yield on an n-year par yield bond issued by the reference entity over 

n-year par yield risk-free rate. 

 

CDS quotes were taken for 1,3,5,7 and 10-year periods at each of 16 data points for each 

quarter of a 4 year period from January 2000 to December 2003. CDS quotes over a five 

year period were given courtesy Lombard Data Systems. CDS quotes for each company 

were taken according to the time to maturity of its bonds. 

 

The following is a list of the various symbols used in the CDS data quotes along with a 

few examples : 

 

ValuSpread Ticker :   Ticker symbol 

 

Full Name :   The full reference entity name 

 

Rank :                  The rank of the debt for which the protection is valid. Sovereign 

debt is assigned no rank. 

  

Curr :    The currency of the debt for which the protection is valid 

 

Restruct :   The restructuring rules of the credit protection 

 

CUMR – “With Restructuring” Credit spreads will include a 

premium for full restructuring. 

 

XMMR – “Modified-Modified Restructuring” Until CUMR 

contracts expire, both CUMR & XMMR spreads will be quoted. 
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MODR – “Modified Restructuring” Credit spreads will include a 

premium for modified restructuring. 

 

EXR – “Excluding Restructuring” Credit spreads will exclude any 

type of debt restructuring premium. 

 

Mid/Recovery :  Defines whether the value in the column titled ‘LRS Mean’ is a 

mid-market mean credit spread (CDM) or a recovery rate (CDR). 

Both values are derived from the contributions of key market 

makers in the credit derivatives market. 

 

Maturity :   The maturity of the protection. For this reason, recovery rates 

identified in the ‘Mid/Recovery’ column have no maturity. 

 

LRS Mean :   Either a mid-market mean or a mean recovery rate as defined in 

‘Mid/Recovery’. Values are quoted in basis points and are rounded 

to two decimal places. 

 

LRS Std Dev :  The degree of variability of the contributions, rounded to two 

decimal places. 

 

Date :  The date on which the credit spread /recovery rate has been valued. 

 

Example : 

 
 

ValuSpread 

Ticker 

 

Full Name 

 

Rank 

 

 

Curr 

 

Restruct 

 

Mid/Recovery 

 

Maturity 

 

LRS Mean 

 

LRS St 

Dev 

 

Date 

VOD1 Vodafone 

Group plc. 

SEN USD CUMR CDM 1Y 21.50 1.22 14/07/2003 
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• The unique ticker is VOD1 and the company under consideration is Vodafone 

Group plc. 

• Data is applicable to senior debt that is denominated in US Dollars. 

• The restructuring type is CUMR. (with restructuring) 

• The mean is a mid-market mean credit spread. 

• Data is applicable to 1 year protection. 

• The mid-market mean derived from market makers contributions is 21.50 basis 

points. 

• The standard deviation of those contributions is 1.22 

• The data is applicable to the 14th of July 2003. 

 

 

5.4  Equity Data 

 

• Equity prices were taken from January 2000 to December 2003. 

 

• Adjusted closing price was taken for this purpose. 

 

• Historic volatility was estimated using the daily stock prices of that particular 

quarter 

 

• Using a quarter to estimate volatility is a trade-off. Using a longer period to 

estimate volatility would result in a more accurate but less timely estimate, while 

using a shorter period would result in less accurate but more timely estimate. 

 

• Equity prices were taken from http://finance.yahoo.com  

 

 

5.5  Balance Sheet Data 

 

• Total assets (book value) were taken for each company at each data-point. 
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• Long-term debt (book value) was taken for each company at each data-point. 

 

• Asset and debt-values were taken from CompuStat. 

 

 

5.6  Interest Rate and ‘T’ 

 

• Risk-free interest rates were taken for each of the 16 data-points. 

 

• Risk-free interest rate for 1,3,5,7 and 10-year periods were taken. 

 

• ‘T’ - time to maturity was taken as the weighted average of different time to 

maturities for different bonds. 

For example, if the following is the debt structure of Colgate Palmolive, the value of “T” 

would be calculated as shown: 

 

 
COLGATE PALMOLIVE Bond Value Time to maturity  "T" 

  19711160 3.375 66525165  

  10860623.4 25.45833333 276493370.7  

  15621372 21.375 333906826.5  

  30550770 1.333 40724176.41  

  35263107 8.333 293847470.6  

  23056660 2.25 51877485  

      

 Total 135063692.4  1063374494 7.873134
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5.7  Merging the Data 

 

• In total, 54 companies were chosen across various sectors such as Retail, 

Communication, Aerospace, Finance, Energy, etc. 

 

• The companies were chosen across various sectors just to validate the model 

against various types of industries. 

 

• Also, one of the criteria to choose companies was that the CDS data over the 

entire period should be available to us.  

 

• For each company, there were 16 data points – quarter-end points from January 

2000 to December 2003. 

 

• Companies were chosen with different market cap sizes and grouped as under 3 

classes :  

 

a) Large Cap   (Total Assets > $50 billion) 

b) Medium Cap   ($10 billion < Total Assets < $50 billion) 

c) Small Cap   (Total Assets < $10 billion) 

 

 

A sample input file for a single company would thus consist of the following : 

 

a) Equity volatilities  (16 data points : 4 yrs * 4 qtrs) 

b) Equity prices   (16 data points : 4 yrs * 4 qtrs) 

c) Asset value   (16 data points : 4 yrs * 4 qtrs)  

d) Long term Debt  (16 data points : 4 yrs * 4 qtrs) 

e) Risk free rate   (80 data points : 1,3,5,7 &10 yr rate for 16 quarters) 

f) CDS quotes   (80 data points : 1,3,5,7 &10 yr rate for 16 quarters) 
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A sample output for 15 companies is shown :  

 

Company Name Best Q Best α CDS Error 
MarketCap 
($billion) 

Sector 

      
IBM 1.128 0.206 0.008272 150 Communication, IT 
Verizon 1.128 0.01 0.0055 95.8 Communication, IT 
      
Boston Scientific Corp 1.01 0.696 0.008861 37 Medical equipments 
Bausch & Lomb Inc 1.187 0.402 0.005081 3.25 Medical equipments 
      
Lehman Bros Holdings Inc 1.01 0.598 0.011357 21 Financial Services 
ABN AMRO 1.069 0.794 0.0064 35 Financial Services 
      
Nordstrom Inc. 1.01 0.206 0.01084 5.61 Retail, Food, Products 
PepsiCo 1.364 0.304 0.0067 91.1 Retail, Food, Products 
      
Boeing 1.305 0.696 0.00592 38.62 Aerospace, Airlines 
Delta Airlines 1.364 0.598 0.010245 1 Aerospace, Airlines 
Lockheed Martin Corp 1.128 0.402 0.0066 22.23 Aerospace, Airlines 
      

Black & Decker 1.264 0.304 0.006711 4.75 
Electrical, Construction 
 machineries 

Caterpillar Inc 1.128 0.402 0.005072 26 
Electrical, Construction 
 machineries 

      
Chevron 1.364 0.402 0.010927 96 Energy 
Duke Energy Corp 1.069 0.696 0.00605 18.24 Energy 
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6.  Hedging and Capital Structure Arbitrage 
 
 
6.1  Credit Risk Hedging Strategies 

 

In this section, the process of Omicron Neutral Hedging is explained in some detail. 

Further, the implied exploitation of credit pricing discrepancies is discussed.  

A regular hedged position includes the assumption of positions that neutralize the risk 

involved in asset claims that are contingent on an uncertain underlier. Consider the 

example of a trivial currency hedge. Consider the parity of a certain currency to the US 

Dollar to be X/$. The position of simultaneously selling $1 for X of the foreign currency 

and selling X back of the same currency for US Dollars bears no inherent currency rate 

risk. Further, should there be an arbitrage opportunity, this pair of transactions will 

produce a non-zero cash flow. A negative cash flow in this scenario can elementarily be 

exploited by taking the opposite side of the transactions described above. Also, if the 

trade is not simultaneous, the returns from this pair of trades should match the 

corresponding risk-free rate. 

 

Analogous to this example is the case of a credit risk hedge. The derivative that is 

relevant to the credit risk is the Omicron (dE/d(OAS)). 

The risk-neutralizing transaction of a position with positive Omicron would involve 

assuming an equivalent position in CDS contracts. There could be two different reasons 

to assume this position as described below: 

 

1. The combination of transactions simply aims to relieve the bearer of any credit 

risk of the underlier. Consider a speculative trade involving the bond issue of a 

particular company. The assumption of the prescribed trade, assuming the CDS 

spread is fair-priced, relieves the speculator of the risk involved in holding the 

risky corporate debt. 

2. The Omicron neutral position can be used to exploit any credit arbitrage 

opportunity. Consider the following transaction: This is a modification of the 

delta neutral Convertible Bond arbitrage technique. A convertible bond purchase 
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is made for a certain sum. The corresponding short delta position is taken in the 

stock.  

Consider an instrument with an Omicron value of O. Now entering into the 

appropriate CDS contract will make the portfolio Omicron neutral. Thus for a 

small change in the credit spread of dS, the value of the instrument falls by O*dS. 

However, the value of the CDS contract held increases by the same O*dS (by 

definition of the hedge), leaving the value of the portfolio unchanged. In the 

presence of any mis-pricing, this pair of trades would have a non-zero initial cash 

flow, producing a return of zero. The portfolio will naturally have to be 

rebalanced in order to maintain the optimum hedge position.  

As it is essential to correctly estimate the optimal hedge at every instant, the Omicron 

derivative must be obtained by the best possible estimate. This is where the non-Gaussian 

model can be applied. If a better understanding of the underlying asset process is forded 

by using the non-Gaussian model discussed in this report, this should in fact be employed 

in the derivative estimation.   

It is important to note that the process of extracting value from any potential credit risk 

mis-pricing may involve assuming other risks such as interest rate risk, currency risk or 

market risk. These positions can and must therefore also be appropriately hedged in order 

to be assured of an arbitrage return.  

 

6.2  Note on Market Correction 

 

Theoretically, the continuous rebalancing strategy presented above does not require a 

“market correction”. This is because the value of the terminal value of the CDS contract 

is unambiguous at maturity. Hence, the valuation is necessarily “correct” at this time-

point. To make a certain gain from any mis-pricing by the above technique, the trade 

positions must be designed to extract a positive cash flow from any mis-pricing at each 

rebalancing. This also generates the maximal cash flow from any credit risk mis-pricing. 

If the market does “correct” at a time before maturity following a previous mis-pricing, 

the arbitrage can be terminated at this point by closing out all positions.  
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7.  Results and Conclusions 
 

7.1  Results 

 
The available data was processed for the complete sample set of companies and the 

algorithm delineated above was used to identify the model parameters for each sample. 

The results of the algorithm were analyzed from different perspectives.  

 

First, the q values are presented against companies sorted by market capitalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyzing all the samples, the overall average qavg = 1.23 and αavg = 0.3. These values 

provide a zeroth order estimate to evaluate asset processes. While there is a moderate 

departure from the Gaussian case indicated by the value of q (against q=1, for Gaussian 

processes), the α value presents a significant skew compared to the normal case of α=1.  

The (q, α) values were tested for predictability. As is apparent from the graph above, 

almost all ranges of q are assumed by different companies in each market size. The first 
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series represents largest size companies and can be seen to take on a more conservative 

range of q values compared to relatively smaller companies. 
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In this graph, it is seen that the α values take on greater departures from normalcy on 

larger companies. In fact, no company in this range shows a value near 1. This can be 

explained in part by the non-Gaussian model characterization. When the Asset variance 

(σ), the Asset Value and α are all fit to available data, a larger asset value could be 

supported by a combination of a smaller α and a larger σ. This does not present a 

discrepancy. This structure shows the possible set of actual values that cause the 

derivative processes and properties (Equity values, CDS spreads and volatility) as 

observed. This might have to do with the fact that large companies’ volatilities reflect a 

belief of larger Asset Values than in the Gaussian case. 

 

The values for (q, α) and Asset Volatility obtained in our analyses are smaller than those 

expected based on evaluations on Equity prices. This is understandable as the Asset 
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process includes both debt and equity and the overall process can be expected to have 

lower percentage volatility when compared to the equity portion alone. 

 

The next data characterization exercise involves identifying potential patterns that would 

allow a combined joint estimation of (q, α) based on some single representative 

evaluation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The scatter plot above shows that there is no perceptible pattern as described above. This 

hints at the relative independence of these parameters. Hence (q, α) need to be evaluated 

independently, justifying the process described in the algorithm section that was used in 

our analysis. 

 

 

7.2   Sector Analysis 

 

Further analyzing the q values obtained with respect to the sector-wise characterization of 

samples, the following behavior is presented. 
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The qavg over the entire sample space seems to be representative of the qavg for each 

sector. This reaffirms the sector-wise stability of the q values. With in each industry, the 

full range of q-values seems to be assumed, indicating independence of these values from 

sector information.  

 

 

7.3   Reliability 

 
The model fit for each sample point is presented below. 
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The (q, α) parameters seem to be quite effective in matching the CDS values against 

which they were evaluated. This justifies the use of the non-Gaussian model. A time 

stability analysis of the fit would reaffirm the strength of this model. This however is a 

task that needs to be addressed in possible extensions of this project. Studies by the 

sponsor have shown that the parameter values are quite stable for a given target company. 

This lends credibility to any indications provided by this model. 

The outliers in terms of fit are quite clearly identifiable in the above graph. These 

samples are ideal targets for investigation of possible capital structure mis-pricing. 

 

 

7.4   Sensitivity Analyses 

 

In this section the variation in calculated CDS values and their derivatives with respect to 

the model parameters are checked against a typical set of company inputs while allowing 

a single quantity to run its entire range of values. 

The following sensitivity analyses plots were obtained: 

Input parameters used were A0, L, σA, q, α and T. D was calculated as A0* L*e-rT. The 

rate r used is held constant. 
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Sensitivity to A0
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It is clear from these plots that the calculated CDS value is stable with respect to a full 

range of Asset Value and Volatilities. It is important to note that 
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The sensitivity of the calculated CDS to Leverage Ratio is reasonably steady. The 

derivative however seems to vary at high values of L. This could be because fatter tails 

are increasingly germane to the default possibility at high Leverage Ratios.   
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The sensitivity to the Maturity period is also limited for the greater part of the range 

considered. This sensitivity however, rises sharply for large values. This probably is a 

result of fair weighting of away-from-the-money possibilities of default. 

  

The overall limited sensitivity of the calculated CDS values to the range of parameters 

presented makes the approximations used in the project permissible.   

The observables were used as detailed in the algorithm to obtain the complete non-

Gaussian asset process. The model itself was validated against all companies tested and 

any deviations explained. The model can now be used to evaluate credit risk and other 

parameters for any derived process of the asset process.  
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8.  Conclusions and Directions for Future Work 
 

This project gave the entire group extremely valuable insights into credit risk evaluation, 

understanding the linkages between the traditional Merton Setting and credit risk, and 

further, the process of extending the above analyses to a Non-Gaussian framework. 

A major goal of the project was to validate the Non-Gaussian model for the asset process. 

This was successfully completed using a large diverse set of sample companies for which 

Credit Default Spread Data was available.  

 

The behavior of these model parameters was studied against the entire data set and 

conclusions regarding the independence of q and α drawn. Secondary tasks of measuring 

the sensitivity of the calculated CDS spread values to changes in various company/model 

related parameters (such as Asset Value, Leverage Ratio, q and α) were also completed .   

 

The model was also used to evaluate the Omicron values of the Equity process of a 

sample data set. The verification of this evaluation is however left as a future exercise 

which would require finer CDS time-data.  

 

This project can also be extended into validating the time stability of q and α over the 

interested time range. This requires compilation of richer data. While quarterly data was 

used for the purpose of this project, at least monthly data would be required to draw 

statistically significant conclusions on the stability of parameters evaluated over sub-

ranges of time.  

 

For the purpose of this project, the weighted average of multiple debt maturities was used 

in the analysis. The optimality of other candidates including the first maturity, a seniority 

weighted average maturity and a duration measure which considers coupon payments can 

be studied. The best of these can be used as the appropriate handle on the maturity. 

Overall, this project gave our group an excellent opportunity to review and work on not 

only key concepts of credit risk pricing but also the process of compiling and analyzing 

relevant data to complement the theoretical research.  
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