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Results Results -- PhantomPhantom

Tumor Sensitive Structure Normal Tissue 
Algorithm Avg. Dose 1σ Avg. Dose 1σ Avg. Dose 1σ 
ICA +9% +48% -48% -12% +18% +47% 
PCA +8% -13% -18% -9% +7% +14% 
Perfect Foresight +9% -30% -89% -65% -8% +13% 
 

Tumor Femurs Rectum Normal Tissue 
Algorithm Avg. Dose 1σ Avg. Dose 1σ Avg. Dose 1σ Avg. Dose 1σ 
ICA +6% +14% +196% +165%+21% +73% +24% +28% 
PCA +5% -44% +40% +45% -5% +18% +13% +11% 
Perfect Foresight +5% -49% -8% +12% -54% -40% -7% +2% 
 

Current radiation therapy (RT) does not adapt to inter-fraction organ 
movement and dosimetric errors caused by inaccurate setup or organ 
deformation during a course of treatment. The emergence of on-board cone 
beam CT (CBCT) affords an effective means to obtain the patient’s 
geometric model just before treatment and recompute on a routine basis the 
dose to be delivered or actually delivered to the patient. This makes it 
possible to adaptively correct for dosimetric errors in the previous fractions 
by modifying the treatment plan. However, before this new scheme of RT 
can happen clinically, an inverse planning algorithm capable of taking into 
account the dose delivery history and the patient's geometric model must be 
in place. In this paper we devise dynamic closed-loop control algorithms for 
adaptive therapy (ART) and demonstrate their utility with data from phantom 
and clinical cases. To meet the need of different clinical applications, we 
study two classes of algorithms: those Adapting to Changing Geometry and 
those Adapting to Geometry and Delivered Dose. The former class takes 
into account organ deformations found just before treatment.  The latter 
class optimizes the dose distribution accumulated over the entire course 
treatment by adapting at each fraction not only to the information just before 
treatment about organ deformations but also to the previous dose delivery 
history. We showcase two algorithms in the class of those Adapting to 
Geometry and Delivered Dose. We study the feasibility and utility of the 
algorithms using phantom and clinical cases. A comparison with 
conventional approaches indicates that ART optimization may significantly 
improve the current practice.
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α(v) Importance factors

βi Beam modulation for fraction i

N Number of fractions

D*(v) Prescription dose for voxel v

Di(v,β) Actual delivered dose to voxel v
under modulation β in fraction i

Di
*(v,β) Planned dose to voxel v under 

modulation β in fraction I

δD(v) Accumulated dose error for 
voxel v

Terminology
Algorithm 

Objective functions 
for different schemes of dose optimization 
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Perfect Foresight 
 
(The theoretical upper 
limit of any RT 
algorithm) 

Minimize the difference between the prescription and the delivered 
dose accumulated over all treatment fractions. 
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∑  
Baseline 1: Population-
Based Margins Add margins to the prescription ( *D ) and then minimize the 

difference between the prescription and the daily planned dose ( *
0D ) 
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∑  
Baseline 2: Adapting to 
Changing Geometry Update the patient’s geometric model every fraction using CBCT and 

plan a dose for that geometry that minimizes the difference to the 
daily prescription. 
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∑  Immediately 
Correcting 
Algorithm 
(ICA) Update the patient’s geometric model every fraction using CBCT and 

plan a dose for that geometry that minimizes the difference to the 
prescribed dose plus the accumulated error. 
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Prudent 
Correcting 
Algorithm 
(PCA) 

Update the patient’s geometric model every fraction using CBCT and 
using that geometry plan a dose for remaining (d+1) fractions that 
minimizes the difference to the prescribed dose plus the accumulated 
error. 

 
 

Analysis of ICA & PCA Results
• Errors do not accumulate (see phantom’s sensitive structure)

• Dose escalation to the tumor while keeping the sensitive 
structure close to 25%

• Steeper gradients around the tumor

• ICA performs much worse than PCA (As it tries to fully 
compensate for previous dose daily)


