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Abstract 

Sequential sampling strategies have been developed for managing complexity when using 

computationally expensive computer simulations in engineering design. However, much of the 

literature has focused on objective-oriented sequential sampling methods for deterministic 

optimization. These methods cannot be directly applied to robust design which must account for 

uncontrollable variations in certain input variables (i.e., noise variables). Obtaining a robust 

design that is insensitive to variations in the noise variables is more challenging. Even though 

methods exist for sequential sampling in design under uncertainty, the majority of the existing 

literature does not systematically take into account the interpolation uncertainty that results from 

limitations on the number of simulation runs, the effect of which is inherently more severe than 

in deterministic design. In this paper, we develop a systematic objective-oriented sequential 

sampling approach to robust design with consideration of both noise variable uncertainty and 

interpolation uncertainty. The method uses Gaussian processes to model the costly simulator and 

quantify the interpolation uncertainty within a robust design objective. We examine several 

criteria, including our own proposed criteria, for sampling the design and noise variables and 

provide insight into their performance behaviors. We show that for both of the examples 

considered in this paper the proposed sequential algorithm is more efficient in finding the robust 

design solution than a one-shot space filling design. 

Keywords:  robust design, sequential sampling, metamodel, interpolation uncertainty 
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1 Introduction 

To satisfy consumer expectations of high quality and low cost products, it is essential for 

a product design to be robust to the variations of uncertain input variables [1-3]. In simulation-

based robust design, the computer simulation response is considered to be a function of two 

types of input variables – design (“control”) variables and noise variables [1] – and the objective 

is to find a design that results in a desirable response mean and insensitivity or robustness to 

variation in the noise variables [1, 4]. 

Robust design formulations typically require a large number of simulations to directly 

determine statistical characteristics (e.g. mean and variance) of the response with respect to the 

distribution of the noise variables [5]. As computer simulations [4, 6] increase in accuracy (e.g., 

a finer mesh in FEA) and complexity, the computational cost of running extensive computer 

simulations becomes prohibitive. Global metamodels (a.k.a. surrogate models, emulators, 

response surface models, etc.) fitted over the design/noise variable input domain have generally 

been relied upon when searching for the optimal robust design [7, 8]. However, with limited 

sample sizes, the accuracy of such metamodels can be very poor. Metamodel accuracy relates to 

the ability of the metamodel to accurately interpolate between sampled simulation points, which 

Apley et al. [9] termed interpolation uncertainty. Furthermore, Jin et al. [10] have shown that 

interpolation uncertainty can have a large effect on robust design optimization. 

Relative to the “one-shot” global metamodeling approach [11, 12], sequential sampling 

procedures can be more useful because they incorporate learning to ensure the maximum 

information is obtained from the fewest runs. They also allow the sample size to be determined 

adaptively as the data accumulates, which avoids conducting unnecessary additional computer 

simulations after a design is deemed sufficiently close to optimal. One form of sequential 
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sampling is objective-oriented sequential sampling [13-16], where one considers the specific 

manner in which the simulation results are to be used for optimizing a design objective. As 

depicted in Fig. 1 (for the deterministic optimization scenario in which the goal is to minimize 

the response y as a function of a design variable d, without any noise variables), in objective-

oriented sequential sampling the goal is to select the next simulation point in a manner that 

balances between what appears to be a strong candidate for the optimal design (dA), versus where 

interpolation uncertainty remains too large (dB). As Jones et al. [13] and others have 

demonstrated, objective-oriented sequential sampling can provide an efficient means of arriving 

at the global optimum without producing a globally accurate metamodel of the computer 

simulator, which can result in tremendous computational savings over global metamodeling. 

The aforementioned objective-oriented sequential sampling approaches have only been 

applied to deterministic optimization and cannot be directly applied to the optimization of a 

robust design objective function. In robust design, both noise and design variables must be 

selected in order to run the simulation, but the robust design objective function depends only on 

the design variables because the effects of the noise variables are integrated out (via Eq. (3), 

below) when calculating the performance mean and variation. Therefore, this body of work can 

only select the design variable setting and not the noise variable setting. Moreover, the adverse 

effects of interpolation uncertainty are compounded in robust design: Because the robust design 

objective function involves integration over a range of values for the noise variables, one cannot 

eliminate the effects of interpolation uncertainty with a single final confirmation run, as in 

deterministic optimization. 

Previous authors [9, 17-19] quantified the interpolation uncertainty in the robust design 

objective based on a Bayesian analysis of a Gaussian process (GP) model (a.k.a. Gaussian 
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random process models) as the metamodel. Reference [9] considered an approach to reduce the 

impact of interpolation uncertainty by guiding users in selecting design variable sites for 

additional simulations based on graphical visualization of the effects of uncertainty on the robust 

design objective. However, [9] did not present a method for selecting the noise variable sites, nor 

did it present an automated algorithm for selecting design and/or noise sites. Furthermore, the 

graphical visualization techniques presented in [9] can be difficult to apply to high dimensional 

design applications. References [17-19] have adapted the expected improvement algorithm of 

[13] to robust design in the presence of noise variables. However, the robust design formulations 

used in their works include either the mean or the variance of the response in a robust design 

objective, but not both. Reference [20] used a robust design objective function that includes both 

the mean and variance, but the author does not systematically account for the effect of 

interpolation uncertainty on the robust design objective. Even though other methods for 

sequential sampling in design under uncertainty exist, these works focus on quantification of 

constraint response uncertainty in reliability-based design optimization using prediction intervals 

of response surface models [21, 22].  

Unlike the informal graphical visualizations in [9] for additional computer simulations, in 

this paper we develop a systematic algorithmic sequential sampling method that is intended to 

efficiently identify the optimal robust design in the face of interpolation uncertainty. Like the 

approaches of [17-19], our approach considers both noise variable uncertainty and interpolation 

uncertainty and uses a Gaussian process framework to provide a consistent method of 

approximating the costly simulator and quantifying the resulting interpolation uncertainty. 

However, instead of considering only the mean or variance in the robust design objective, we 

develop an objective-oriented sequential sampling algorithm for a form of robust design in which 
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the single robust design objective function includes both the mean and the variance, the same 

objective function considered in [1, 8-10]. For many systems in which the response is of the 

smaller-is-better type, including both the mean and variance in the objective function constitutes 

a more natural robust design formulation than minimizing the variance under an inequality 

constraint on the mean, or vice-versa, as was done in [17].  

Specifically, the contributions of this paper are to develop a formal systematic sequential 

sampling algorithm that (1) selects both the noise variable sites and the design variable sites, (2) 

optimally balances between reducing the effects of interpolation uncertainty versus sampling 

where the robust design objective function appears to be optimal, and (3) is applicable to a robust 

design objective function that considers both the mean and the standard deviation of the 

response. In Section 2, we review the approach for quantifying interpolation uncertainty in the 

robust design objective function. Next we introduce an illustrative example in Section 3 that we 

use throughout this paper to explain our proposed sequential sampling algorithm. In Section 4, 

we present our proposed objective-oriented sequential sampling algorithm and detail several 

different objective-oriented sampling criteria for selecting the simulation inputs in the robust 

design setting. In addition to the illustrative example introduced in Section 3, we apply the 

proposed sequential algorithm to the design of an automotive engine piston in Section 5. Both 

examples illustrate the effectiveness of the sequential sampling algorithm in efficiently finding 

the optimal robust design, and we also use them to assess the advantages and disadvantages of 

the competing criteria for determining the next sequentially sampled point. Section 6 concludes 

the paper. 

2 Robust design with Gaussian process models 

In this section, we briefly review the method for quantifying the effects of interpolation 
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uncertainty on the robust design objective function (see [9] for additional details). Let d denote a 

nd × 1 vector of design variables, W a nw × 1 vector of random noise variables, w a specific value 

for W, p(w) the known probability distribution function of W, and y(d,w) the response from a 

computationally expensive deterministic computer simulator as a function of d and w. By 

deterministic, we mean that the value of the response is exactly the same for repeated runs of the 

computer simulator at the same input settings for d and w. 

The robust design objective that we consider is to find [1, 8, 10] 

 * arg min ( )f=
d

d d  (1) 

where d* denotes the optimal robust design and the robust design objective function is 

 ( ) ( ) ( )f cµ σ= +d d d  (2) 

with c (e.g., c = 2, 3, etc.) denoting a user-defined constant that reflects risk attitude. The mean 

and variance of the response are 

 
2 2

( ) [ ( , )] ( , ) ( )

( ) [ ( , )] [ ( , ) ( )] ( )

E y y p d

Var y y p d

µ

σ µ

= =

= = −

∫

∫

d d W d w w w

d d W d w d w w
. (3) 

To consider the variation (e.g., manufacturing variation) in the design variables, one could 

decompose each uncertain design variable into one component that represents the nominal value 

of the design variable and a second component that represents the random error between the 

actual design variable and the nominal value [23]. For simplicity, in this paper we do not 

consider variation in the design variables, and we only consider the robust design objective 

function of Eq. (2) with no constraints. 

Typically, the integrals of Eq. (3) require many evaluations of y(d,w). To alleviate the 

associated computational burden, we create an easy to evaluate metamodel based on a smaller set 

of observations from y(d,w). Then, instead of directly using y(d,w), we use the prediction of the 
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metamodel over the domain of integration to approximate the mean and variance in Eq. (3). GP 

models are popular metamodels in the engineering and geostatistics community, with Kriging 

being one specific form of GP modeling [24-26]. GP models are ideal for representing 

deterministic computer simulations because they provide a prediction that passes exactly through 

every observation. Additionally, the GP model provides an inherent mechanism for quantifying 

the interpolation uncertainty at input points where no data has been observed. Other 

metamodeling techniques, e.g., radial basis functions [27], support vector regression [28], 

polynomial regression [29], etc., do not have an adequate mechanism for quantifying the 

interpolation uncertainty. 

Adopting the same notation as [9], we use G(d,w) to denote the GP model of the 

response, and we write the response as Y(G,d,W) = G(d,W). This allows us to express the 

response Y as a function d and of two random sources of uncertainty -- the interpolation 

uncertainty quantified by G and the uncertainty of the noise variables W. 

Likewise, we rewrite the robust design formulation of Eqs. (1), (2), and (3) as  

 * arg min ( | )F G=
d

d d  (4) 

where 

 ( | ) ( | ) ( | )F G G c Gµ σ= +d d d  (5) 

with 

 2

2

( | ) [ ( , , ) | ] ( , , ) ( )

( | ) [ ( , , ) | ]

[ ( , , ) ( | )] ( )

G E Y G G Y G p d

G Var Y G G

Y G G p d

µ

σ

µ

= =

=

= −

∫

∫

d d W d w w w

d d W

d w d w w

. (6) 

An interpretation of this notational representation of the robust design objective function is as 

follows. In order to calculate Eqs. (2) and (3) directly, one must know the entire simulation 
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response surface y(d,w), as opposed to just a set of observed simulated responses yN = [y(d1,w1), 

…, y(dN,wN)] at the input points {di, wi: i = 1, …, N}. But within the probabilistic GP 

framework, knowing the entire response surface corresponds to conditioning on G. Hence, Eqs. 

(4) − (6) are written as conditioned on G. Since we never know the entire response surface and 

must interpolate between simulated points, this also implies that we view ( | )Gµ d  and 2 ( | )Gσ d  

as random variables via their dependence on the unknown complete response surface represented 

by the GP model G. In this respect, the notation ( | )Gµ d , 2 ( | )Gσ d , and ( | )F Gd  indicates that 

the uncertainty in these quantities is due to having to interpolate the GP model of the response 

surface within the integrals of Eq. (6) at values other than the simulation points. Notice that this 

interpolation uncertainty is not due to variation in W, because effects of the noise variables are 

integrated out in Eq. (6). In the remainder of this paper we refer to ( | )F Gd  as the stochastic 

robust design objective function. 

To quantify the interpolation uncertainty in ( | )F Gd , [9] used the interval 

 ( | ) ( ) 2.0 ( )F FF G µ σ∈ ±d d d  (7) 

which can be viewed as an approximate 95 % Bayesian prediction interval under the assumption 

that ( | )F Gd  is approximately normally distributed. Here, ( )Fµ d  and ( )Fσ d  denote the mean 

and standard deviation of ( | )F Gd  (with respect to the posterior distribution of the random 

surface G, given the observed data yN) and are given by 

 
2 2 2 2

( ) ( ) ( )

( ) ( ) ( ) 2 [ ( | ), ( | )]

F

F

c

c cCov G G

µ σ

µ σ

µ µ µ

σ σ σ µ σ

= +

= + +

d d d

d d d d d
 (8) 

where  

 
2 2

( ) [ ( | )], ( ) [ ( | )]

( ) [ ( | )], ( ) [ ( | )]

E G E G

Var G Var G

µ σ

µ σ

µ µ µ σ

σ µ σ σ

= =

= =

d d d d

d d d d
. (9) 
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Equations for ( )µµ d , ( )σµ d , 2 ( )µσ d , 2 ( )σσ d , and [ ( | ), ( | )]Cov G Gµ σd d  in terms of the GP 

model’s posterior mean ˆ( , ) [ ( , , ) | ]Ny E Y G=d w d w y  and covariance 

[ ( , , ), ( , , ) | ]NCov Y G Y G ′ ′d w d w y  are presented in Section 4 and in the appendix of [9]. Equations 

for the GP model’s posterior mean and covariance are standard results [9, 24, 25] based on linear 

minimum mean square estimation or Bayesian analysis of linear Gaussian models and are 

presented in Appendix A of this paper.  

The equations for ( )µµ d , ( )σµ d , 2 ( )µσ d , 2 ( )σσ d , and [ ( | ), ( | )]Cov G Gµ σd d  require 

integration with respect to the noise variables, which can be implemented using numerical 

integration. Alternatively, in this paper we use closed form solutions for these integrals, which is 

possible if p(w) is taken to be a multivariate normal distribution and the GP model uses a 

Gaussian correlation function with a constant prior mean. A prediction interval for ( | )F Gd  of 

the form in Eq. (7) allows the designer to evaluate the impact of interpolation uncertainty on the 

robust design objective function, and it provides a basis for selecting points at which to run 

future simulations. One should note that 2 ( )Fσ d  in Eq. (8) is used to calculate ( )Fσ d   

As a side note, the value of ( )Fσ d  directly quantifies the effect of interpolation 

uncertainty on the stochastic robust design objective function ( | )F Gd . It should not be confused 

with σ(d) of Eq. (2) , which represents the standard deviation of the response due to noise 

variable uncertainty, conditioned on knowing the entire response surface G(d,w). The value of 

( )Fσ d  is not directly affected by noise variable uncertainty, since the noise variables have 

already been integrated out prior to Eqs. (8) and (9). 

3 An Illustrative Example 

In this section, we introduce an illustrative example, which is the same example 
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presented in [9]. The example involves designing an open box container to ferry a specified 

amount of gravel across a river. The response is the cost of the open box 

2 2( , ) 80 2y d W d dW d W−= + +  (modified from [30]), where the scalar design variable d 

represents the length of the bottom of the square box in meters with a range of [0.8, 2.5] m, and 

the scalar noise variable W represents the material cost per unit with a range of [7, 13] $/m2. To 

represent the uncertainty of the material cost, we assign a normal distribution to the noise 

variable 2~ ( , )w wW N µ σ , with mean wµ  = 10 $/m2 and variance 2
wσ  = 2 $2/m4. Although the 

response function is known and easy to evaluate, for illustrative purposes we treat it as a 

computationally expensive computer simulator. 

Fig. 2 shows the response surface y(d,w) and the resulting true robust design objective 

function from Eq. (2) with the optimal robust design of d* = 1.34 m, for which f(d*) = $108.30. 

The goal of our proposed sequential algorithm is to obtain d*, and the associated f(d*), with the 

fewest number of computer simulator evaluations. 

4 The proposed sequential sampling algorithm 

The sequential sampling algorithm begins with an initial set of observations from the 

computer simulator and then sequentially determines the additional input settings (d and w both) 

at which to simulate the response in order to most efficiently find the optimal robust design. Fig. 

3 is a flowchart for our proposed sequential sampling algorithm. In Fig. 3, the iteration number 

of the sequential algorithm is denoted by i and the data sequentially collected from the computer 

simulator is denoted by yN+i = [y(d1,w1), …, y(dN+i,wN+i)], where N is the size of the initial data 

set and {dN+i ,wN+i} are the next settings for the design variables and noise variables. The 

following subsections give details on the individual steps. 

Although d and w are treated the same in the simulation (both as inputs), they have 
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completely different physical meaning, which must be taken into account when selecting the 

simulation points. Specifically, the robust design objective function depends explicitly on only d, 

but not on the noise variables, which are integrated out. Hence, although dN+i can be chosen 

based on some appropriate measure of improvement in the objective function, wN+i must be 

chosen differently. Intuitively, our criterion for choosing wN+i is to minimize some measure of the 

impact of interpolation uncertainty on the robust design objective function. This idea of treating 

design variables and noise variables separately is similar to the method used in [16-20]. 

4.1 Step 0:  Initial data set y
N
 

The preliminary step of the algorithm is to gather an initial data set. Many authors 

suggest a space-filling experimental design, e.g. an optimal Latin hypercube design [16-19, 25, 

31]. We too use an initial design of a ‘maximin’ optimal Latin hypercube (lhsdesign function in 

MATLAB®) [11] as the initial design. For sequential sampling, previous literature does not have 

a well-defined rule for the number of initial observations. We suggest N ≤ 10k [13], where k is 

the dimension of all the inputs (i.e., the dimension of d plus the dimension of w). One should 

also consider the available computational resources when determining the initial number of 

observations. In the open box example above, we began by observing four samples (N = 4) as 

shown in Fig. 4 “Step 0: Initial data (y4)”. The iteration number i is set as 0. Fig. 4 will be used 

in the following subsections to illustrate the first iteration of the sequential sampling algorithm. 

4.2 Step 1:  Fit a GP model using y
N+i

 

The first (iterative) step of the algorithm is to fit a GP model to the observed responses at 

the simulation points. Before fitting the GP model, we typically normalize the inputs of the 

simulator (the elements of d and w) to the range of 0 to 1 and standardize the output yN+i  to have 

a sample mean of 0 and a sample standard deviation of 1 [19, 32]. Then the parameters of the GP 
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model are estimated by using the maximum likelihood method (see [26] for details). “Step 1:  Fit 

GP model” in Fig. 4 shows the posterior mean for the prediction of the GP model fitted to the 4 

initial samples from Step 0. Set the iteration number to i = i + 1. 

4.3 Step 2:  Find dmin by minimizing the robust design objective function 

After fitting the GP model to y
N+i, we find the current best design by minimizing the 

robust design objective function that considers both the variability due to the random noise 

variables and the interpolation uncertainty. In analogy with Eq. (2), this robust design objective 

function is defined as  

 ( ) [ ( , , )] [ ( , , )GWf E Y G c Var Y G= +d d W d W  (10) 

where the mean E[Y(G,d,W)] and variance Var[Y(G,d,W)] are with respect to both sources of 

uncertainty (c is the same user-defined constant as in Eq. (2)). The current best robust design dmin 

is defined as the minimizer of the robust design objective function in Eq. (10). Derivations for 

the mean and variance in Eq. (10) are presented in the Appendix B. The robust design objective 

function of Eq. (10) is a deterministic quantity because the mean and the variance account for all 

of the uncertainty. One should note that ( | )F Gd  [defined in Eq. (5)] cannot be used as the 

objective function in this step because it is an unknown random quantity, due to its dependence 

on the unknown full response surface G(d,w). 

“Step 2:  Find dmin” in Fig. 4 shows the robust design objective function from Eq. (10) 

using the GP model from the previous step for the open box example. One should notice that 

fGW(d) in Fig. 4 is much different in shape and magnitude as compared to f(d) in Fig. 2(b), which 

is the result of the inaccuracy and large interpolation uncertainty of the GP model created based 

on the small initial data set. Note that fGW(d) in Fig. 4 does vary with respect to d, although it is 

difficult to discern from the axis scaling used in the figure. 
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4.4 Step 3:  Find the next design variable setting dN+i 

After finding dmin, we select the next design variable setting dN+i to balance between 

improving the robust design objective and reducing the uncertainty of the stochastic robust 

design objective function of Eq. (5) (i.e., the interpolation uncertainty). In this subsection, we use 

the confidence interval of the stochastic robust design objective function, discussed in Section 2, 

to determine the dN+i that provides the best balance between improving the robust design and 

reducing the interpolation uncertainty. The idea here is similar to the traditional objective-

oriented sequential sampling approach for deterministic optimization [13, 14], except that the 

deterministic objective response is now replaced by the stochastic robust design objective 

function.  

We begin by adapting the expected improvement (EI) criterion [13, 14] to the stochastic 

robust design objective function. The original EI criterion has been shown in deterministic 

design to choose additional computer simulation points that balance the objective of improving 

the design while considering the reduction in interpolation uncertainty[13, 14]. To adapt EI to 

robust design, we define the improvement function to be (similar to [16-19]) 

 ( ) max( ( ) ( | ),0)F minI F Gµ= −d d d . (11) 

The improvement function quantifies the improvement of ( | )F Gd  at the proposed design point 

d compared to ( )F minµ d  (the mean of the stochastic robust design objective function at dmin). 

Since ( )F minµ d  is a deterministic quantity and ( | )F Gd  is approximately normally distributed 

with a mean ( )Fµ d  and standard deviation ( )Fσ d , the expectation of Eq. (11), termed the 

expected improvement, can be derived as (from [13, 14]) 

 
( ) ( ) ( ) ( )

[ ( )] ( ( ) ( )) ( )
( ) ( )

F min F F min F
F min F F

F F

E I
µ µ µ µ

µ µ σ φ
σ σ

   − −
= − Φ +   

   

d d d d
d d d d

d d
 (12) 
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where ( )Φ i  is the standard normal cumulative distribution function and ( )φ i  is the standard 

normal probability distribution function. dN+i is then selected as the value of d that maximizes the 

expected improvement. This is illustrated in Fig. 4 as “Step 3:  Find d5”. 

As an alternative to the EI criterion, we also propose the following prediction interval 

(PI) criterion to select dN+i. For the PI criterion, we select dN+i to maximize the upper boundary 

of an approximate prediction interval for the potential improvement function ( ) ( | )F min F Gµ −d d

, which is 

 ( ) ( ) ( ) ( )F min F p FPI zµ µ σ= − +d d d d  (13) 

where zp denotes the 1 − p quantile of the standard normal distribution, and ( )Fµ d  and ( )Fσ d  

denote the mean and standard deviation of ( | )F Gd . Eq. (13) assumes ( | )F Gd  is approximately 

normally distributed. For the examples in this paper we use zp = 3.0, which corresponds to a 

confidence level of 99.87%. Since Eq. (13) measures the extent to which the design d might 

potentially be better than the current optimal design dmin (with confidence 1 – p), it inherently 

balances between sampling where the design appears to be a strong candidate for optimality, i.e. 

a high value of ( ) ( )F min Fµ µ−d d , versus where interpolation uncertainty is large, i.e. a high 

value for ( )Fσ d . We evaluate and compare the EI and PI criteria in Section 5. 

4.5 Step 4:  Stopping criterion 

After choosing dN+i, but before choosing wN+i, we assess a stopping criterion to determine 

whether the entire sequential algorithm should be terminated. In practice, the designer could set a 

limit on the number of computer simulations that are possible. In lieu of this, since the EI and PI 

criteria measure the potential improvement of design dN+i compared to dmin, another option is to 

stop the algorithm when either criterion indicates there is little potential for further improvement. 
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Because the criteria do not always decrease monotonically from one iteration to the next, the 

sequential algorithm can be stopped when the average of the criterion, over a specified number 

of previous iterations, is below a user specified value (see [17-19] for more details on algorithm 

termination using EI). A third alternative is to terminate the algorithm if the value of dmin does 

not change over several iterations, even if there still is substantial interpolation uncertainty. In 

this paper, we simply use a fixed number of iterations. 

4.6 Step 5:  Find the next noise variable setting wN+i 

After selecting dN+i and verifying that the stopping criteria is not satisfied, the next noise 

variable simulation point wN+i is selected to achieve the greatest reduction in interpolation 

uncertainty. Several different criteria are defined below.  

The simplest criterion for reducing interpolation uncertainty is perhaps to select wN+i at 

the location where the uncertainty in the GP model is the largest [25], by maximizing the 

expression 

 ( ) ( )MSE sw w  (14) 

where MSE(w) is the mean squared error (MSE) of the GP model prediction, i.e. the posterior 

covariance of the GP model 1[ ( , , ), ( , , ) | ]N i
N i N iCov Y G Y G + −

+ +d w d w y  given the observed data 

y
N+i-1, and s(w) is some weight function. In [25], the weight function is taken to be a constant 

over the range of w. Alternatively, [20] takes s(w) to be the probability distribution of w, i.e. s(w) 

= p(w). This weighted MSE function encourages the selection of wN+i at noise locations that have 

higher probability of occurring. Using the constant weight function, this step is illustrated in Fig. 

4 as “Step 5:  Find w5”. 

Another method to obtain the greatest reduction of interpolation uncertainty using the GP 

model is to select wN+i at the minimum of the integrated mean squared error (IMSE). The IMSE 
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is defined as [25] 

 ( ) ( . ) ( )IMSE MSE p d′ ′ ′ ′= ∫w w w w w   (15) 

where the MSE′(w,w′) is the posterior covariance of the GP model, which is 

 
1[ ( , , ), ( , , ) | , ( , )]N i

N i N i N iCov Y G Y G y+ −
+ + +′ ′d w d w y d w . (16) 

We note that Eq. (16) can be calculated prior to actually observing y(dN+i,w) [25]. By minimizing 

the IMSE, we are essentially selecting wN+i at the point that minimizes the interpolation 

uncertainty over the entire domain of w at dN+i. 

Another approach to select wN+i is to reduce interpolation uncertainty by minimizing the 

expected value of the variance of the stochastic robust design function [18, 19] 

 [ ]1 1[ ( | ) | , ( , )] |N i N i
N iE Var F G y+ − + −

+d y d w y . (17) 

Since we have not observed the response at dN+i and w, the expectation in Eq. (17) is with respect 

to y(dN+i,w), which is a random quantity with distribution defined by the existing GP model from 

Step 2. Moreover, 1[ ( | ) | , ( , )]N i
N iVar F G y+ −

+d y d w  in Eq. (17) is 2 ( )F N iσ +d  [Eq. (8)] based on the 

observed data yN+i-1 and y(dN+i,w). One should note that the calculation of Eq. (17) has a higher 

computational expense compared to [18, 19], which only use either the mean or the variance in 

the robust design objective function. 

We refer to the four above criteria as the maximum MSE with a constant weight function 

(MSE), the maximum weighted MSE (wMSE), the minimum IMSE (IMSE), and the minimum 

of the expected variance (VAR), which we compare in the examples of Section 5 

4.7 Step 6:  Conduct simulation at {dN+i, wN+i} and form y
N+i

 

After determining both dN+i and wN+i, we conduct the simulation y(dN+i,wN+i). We then 

form the data set yN+i = [yN+i-1
 y(N+i,wN+i)]. For the first iteration of the open box example, we 

show the location for the next simulation in Fig. 4 “Step 6:  Conduct next simulation at {d5,w5}”. 
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As shown in the flow chart of Fig. 3, Steps 1 through 6 are repeated for the selection of the 

subsequent samples from the computer simulator and the algorithm ends when a stopping 

criterion is satisfied. The results after multiple iterations for the open box example are provided 

in the next section. 

5 Results and discussion 

In this section, we investigate two examples to (1) assess if the proposed sequential 

algorithm works effectively and efficiently for locating the robust optimal design and (2) assess 

which criteria for selecting dN+i and wN+i are the best suited for robust design. 

5.1 Open box example 

We continue the open box example using the EI criterion to select dN+i and the MSE 

criterion to select wN+i. The sequential algorithm is run for 11 iterations, which results in a total 

of 15 observations from the computer simulator. To determine if dmin and fGW(dmin) of the 

sequential sampling algorithm converges to d
* and f(d*), we plot dmin and fGW(dmin) over the 

iterations of the algorithm in Fig. 5(a). Fig. 5(a) shows that dmin converges to d* indicating that 

the sequential algorithm can find the optimal robust design. Furthermore, fGW(dmin) converges to 

f(d*) indicating that the interpolation uncertainty of the robust design objective function fGW(d) in 

the neighborhood of d
* is small. To further illustrate the behavior of the sequential sampling 

algorithm, the locations of the 11 sequentially added observations are shown in Fig. 5(b). As the 

algorithm progresses, the samples initially explore the design variable space and eventually 

congregate in the neighborhood of d* spanning the range of w. The relatively large number of 

points in the neighborhood of d* decreases the interpolation uncertainty in this region, and thus 

fGW(dmin) can converge to f(d*). 

Next we continue the open box example to explore the different combinations of the 
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criteria for selecting dN+i and wN+i (Sections 4.4 and 4.6). Recall that the EI and PI criteria are for 

selecting dN+i, and the MSE, wMSE, IMSE, and VAR criteria are for selecting wN+i. We ran the 

sequential algorithm for the remaining seven possible combinations of two types of criteria using 

the same number of iterations and initial data points as above. Table 1 reports dmin and fGW(dmin), 

for the eight combinations of criteria, along with the true optimal robust design. To quantify the 

interpolation uncertainty at dmin, Table 1 also reports ( )F mindσ . As a final check of the accuracy 

of the stochastic robust design objective function, we also report the value of f(dmin). 

All of the combinations of criteria accurately identified d
* with similar results. One 

should note that when using the VAR criterion to select wN+i the resulting ( )F mindσ  was larger 

compared to the other combinations, which indicates the combinations with VAR had more 

interpolation uncertainty at dmin. We also found the VAR criterion tends to select wN+i extremely 

close to previously sampled points, which is a result of numerical instabilities in calculating Eq. 

(17). Moreover, as noted by [31], the VAR criterion is computationally expensive. Therefore, we 

recommend not to use the VAR criterion to select wN+i, and we do not further consider it in this 

paper. 

Although similar results are obtained for the six combinations of the criteria, one should 

note that the selection criterion for wN+i significantly affects where the locations for w are chosen. 

For instance, the IMSE and wMSE criteria select points on the interior of the domain of w, 

whereas the MSE criterion tends to select points on the boundary of the domain of w. This 

observation is consistent with the previous literature [16, 20, 25].  

Also included in Table 1 are two one-shot scenarios, as a comparison to the sequential 

algorithm. Both one-shot scenarios collected 15 computer simulations evenly spread over the 

domain of d and w (using a ‘maximin’ optimal Latin hypercube design). The first scenario “One-
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shot (IU)" has the same robust design objective function of Eq. (10), which considers both the 

variation of the noise variables and the interpolation uncertainty (IU). In the second scenario 

“One-shot (no IU)” the objective function is the same as Eq. (2), except the mean and variance of 

Eq. (3) are calculated by substituting the posterior mean of the GP model in place of the true 

response function y(d,w). This second scenario neglects the interpolation uncertainty when 

finding the optimal robust design and is more widely used because it is simpler to implement 

[10]. In order to achieve a fair comparison between the results of the sequential sampling 

algorithm and the results of the “One-shot (no IU)” scenario, for the “One-shot (no IU)” scenario 

in Table 1 we report the values of fGW(dmin) given that dmin was found using the objective function 

of the “One-shot (no IU)” scenario. Since optimal Latin hypercube designs are random, we 

repeated the one-shot analyses for 30 different optimal Latin hypercube designs, and the one-shot 

results in Table 1 are the averages over the 30 replicates. Since 15 data points are quite sufficient 

for this low dimensional problem in creating a GP model with very little interpolation 

uncertainty, both one-shot scenarios produce similar results. Additionally, both one-shot 

scenarios provide an accurate value for the optimal robust design d
* similar to the sequential 

algorithm using the different combinations of criteria, with the exception of VAR (which we do 

not recommend). However, the sequential algorithm produces a smaller value of ( )F mindσ  

compared to both one-shot scenarios. Smaller values of ( )F mindσ  indicate that the sequential 

algorithm is more effective at minimizing the interpolation uncertainty compared to the one-shot 

scenarios.  

This is consistent with Fig. 5(a), which shows that the sequential algorithm converged to 

the optimal robust design after only seven iterations (for a total of 11 simulation points). In 

contrast, the results for the one-shot experiments with 11 simulation points are inferior (“One-
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shot (IU)“ fGW(dmin) had a mean of $109.02 with maximum of $137.15 and minimum of $104.23, 

and “One-shot (no IU)” fGW(dmin) had a mean of $107.62 with a maximum of $108.75 and 

minimum of $107.32). Although the differences between the one-shot and sequential designs are 

relatively small in this low-dimensional example with a smooth response surface, in the next 

section the differences are more pronounced for the design of an automotive engine piston 

example with 4 design variables and 2 noise variables. 

5.2 Piston Design Example 

In this section, we demonstrate the general application of the proposed sequential 

sampling algorithm with the design of an automotive engine piston that was previously analyzed 

in [9, 33]. Since engine noise is one of the key factors in customer dissatisfaction, the objective is 

to obtain a design that minimizes the piston slap noise and is invariant to the noise variables. 

Piston slap noise is the engine noise that results from the secondary motion of the piston. To 

simulate the piston slap noise, [6] developed a computationally intensive simulation model using 

multi-body dynamics. The response y from this computer simulator is defined as the sound 

power level of the piston slap noise. Table 2 contains the descriptions of the four design variables 

and the two noise variables. The design variables control the geometry of the piston, whereas the 

uncertainty in the noise variables is caused by variation in environmental conditions, e.g., 

temperature, wear, and spark timing. 

Due to the high computational expense of the multi-body computer simulation, the true 

response surface for the piston design example is unknown. Therefore, in order to gauge the 

effectiveness of the proposed sequential sampling algorithm, we take the same approach as [9] 

and build a GP model based on a relatively large and evenly spaced data set of 200 samples 

observed directly from the multi-body computer simulator. Then the posterior mean of this large 
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GP model is treated as the “true” response surface. This yields the true optimal robust design as 

d
* = [2.325 1.300 25.000 1.000]T  and f(d*) = 53.82. 

We now apply the sequential sampling algorithm as described in Section 4, where the 

easy-to-compute “true” response surface is the posterior mean of the large GP model (based on 

the 200 simulations). The initial design is a 10 point ‘maximin’ optimal Latin hypercube design. 

Then the sequential algorithm was run for 20 iterations (providing a total of 30 observations). In 

light of the similar results for the different sequential algorithms for the open box example, we 

only considered the PI criterion to select dN+i and the wMSE criterion to select wN+i in this 

example. 

As with the previous example, we compare the results from the sequential sampling 

algorithm to the results from one-shot scenarios, “One-shot (IU)” and “One-shot (no IU)”. For 

each one-shot scenario, we ran 30 different ‘maximin’ Latin hypercube designs. To compare the 

convergence behavior, Fig. 6 plots fGW(dmin) of the sequential algorithm verses the iteration 

number. Fig. 6 also plots the average fGW(d) across the 30 replicates (each with a different Latin 

hypercube design) for both one-shot scenarios, with the error bars indicating the maximum and 

minimum values over the 30 replicates. Similar to the previous example, for the “One-shot (no 

IU)” scenario in Fig. 6 we plot fGW(dmin) given that dmin is obtained from an objective function 

that neglects the interpolation uncertainty. Comparing the two one-shot scenarios, Fig. 6 shows 

they have similar convergence behavior for the mean, and their error bars generally decrease as 

more points are added. For the “One-shot (no IU)”, a small error bar at i = 0 was observed, which 

is a result of this scenario neglecting interpolation uncertainty and consistently obtaining dmin 

values in regions with large amounts of interpolation uncertainty. These large amounts of 

interpolation uncertainty resulted in fGW(dmin) being consistently large. Comparing the one-shot 
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scenarios to the sequential algorithm, from Fig. 6 we see that as the iterations increases the 

sequential algorithm converges faster to the optimal robust design. For example, if we stopped 

the sequential algorithm at i = 15, then the results for the sequential algorithm are superior to the 

results of both one-shot scenarios. Additionally, for lower numbers of sample points (e.g., i ≤ 5), 

both the one-shot scenarios and the sequential algorithm have a value of fGW(dmin) much larger 

than f(d*) because neither have enough information about the response. 

 

Although we omit the results for brevity, we also observed that the sequential sampling 

algorithm obtained a much smaller value of ( )F minσ d than both of the one-shot scenarios, similar 

to what was observed in Table 1 for the open box example. The smaller value indicates that the 

sequential algorithm effectively decreased the interpolation uncertainty at dmin. Thus, in this 

example, we showed that (1) the sequential sampling algorithm can be applied to higher 

dimensional engineering applications and (2) the sequential sampling algorithm accurately 

identifies the optimal robust design with greater efficiency and less interpolation uncertainty than 

the one-shot designs. 

6 Conclusions 

The majority of previous literature using objective-oriented sequential sampling 

approaches has focused on global optimization of deterministic functions. In this paper, we have 

developed an objective-oriented sequential sampling algorithm for robust design considering 

noise variable uncertainty together with interpolation uncertainty. Because of the uncertainty in 

the noise variables, the effects of interpolation uncertainty on the robust design objective 

function are far less transparent than its effects on a deterministic objective. 

As illustrated in two examples, our sequential algorithm obtained an optimal robust 
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design with a small number of observations from the computer simulator. Additionally, we also 

explored several different criteria for the selection of both the design variables and the noise 

variables. For selecting the next design variable setting, both the EI criterion and PI criterion 

efficiently identified the optimal robust design. When selecting the noise variable setting, the 

IMSE and wMSE criteria reduced the interpolation uncertainty more efficiently than the MSE 

and VAR criteria. Therefore, we suggest implementing the sequential algorithm using the EI or 

PI criteria for selecting the design variables and the wMSE or IMSE criteria for selecting the 

noise variables. 

The sequential algorithm presented in this paper can be applied to many different 

engineering applications involving computationally expensive physics-based computer models. 

This sequential algorithm helps an engineer to efficiently collect simulation data in order to 

obtain an optimal design that is insensitive to the variation of the noise variables, and therefore to 

design higher quality, higher reliability products in less time. 

Although this research has addressed the problem of robust design when using 

computationally expensive simulators, future research is needed to apply the algorithm more 

effectively to many practical design problems, especially in high dimensions. Since many design 

scenarios involve constraints, the proposed sequential algorithm should be augmented to 

consider constraints. Additionally, our sequential algorithm can be computationally demanding 

due to the calculations for the mean and variance of the stochastic robust design objective 

function of Eq. (5). The computational cost of the sequential algorithm increases exponentially as 

the number of observations increases. For example, with 10 and 70 observations, one full 

iteration of our proposed sequential algorithm can require 30 seconds and 1.5 hours, respectively, 

of computation time (on a single Intel 2.66 GHz processor). However, we consider the proposed 
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sequential algorithm to be less computationally demanding than directly optimizing the 

expensive computer simulator. The computational efficiency and numerical stability of the 

proposed algorithm could potentially be improved by incorporating the most recent advances in 

Gaussian process models (for examples see [34, 35]). Finally, one could include additional 

sources of uncertainty into the sequential sampling algorithm (e.g., including the variation in the 

design variables as in [23]). Altogether, further research will enable the use of the proposed 

sequential algorithm for problems with higher dimensions and a larger number of observations. 
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Nomenclature 

E[I(d)] Expected Improvement (EI) criterion at d 

( | )F Gd  The stochastic robust design objective function 

G(d,w), G GP model of the response y(d,w) 

H  Regression functions matrix for the mean of a GP model 

I(d)   The improvement function used in the EI criterion   

IMSE(w) The Integrated Mean Squared Error (IMSE) at w 

IU Interpolation Uncertainty 

MSE(w) The Mean Squared Error (MSE) at w 

PI(d) Prediction Interval (PI) criterion at d 

R((d, w), (d′, w′)) Correlation function of a GP model between points (d, w) and (d′, w′) 

R  Correlation matrix of a GP model 
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W Vector of random noise variables (nw × 1) 

wMSE weighted Mean Squared Error 

Y(G,d,W) The response of y(d,w) with both interpolation uncertainty and noise variable 

uncertainty 

c User-defined constant that reflects risk attitude 

d  Vector of design variables (nd × 1) 

d
*  The optimal robust design 

dN+i  The next settings for the design variables 

dmin  The location of the minimum value of fGW(d) 

( )f d   Robust design objective function 

fGW(d) Robust design objective function that includes both the interpolation uncertainty 

and the noise variable uncertainty 

h(d,w) Vector of regression functions for the mean function of a GP model 

i Iteration number of the sequential sampling algorithm 

p(w) Known probability distribution function of W 

s(w) Weight function used in the wMSE 

w  Represents a specific realization of W 

wN+i The next settings for the noise variables 

y(d,w)  The response from a computationally expensive deterministic computer simulator 

y
N Observed data from the computer simulator (N  ×  1) 

y
N+i Collection of observed computer simulator data at iteration i 

ˆ( , )y d w   Mean prediction of the response based on the GP model 

zp The 1 - p quantile of the standard normal distribution 
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β Regression coefficients for the mean function of a GP 

( )µ d   Mean of the response y(d,W), which depends on the value d 

( | )Gµ d  Mean of the response Y(G,d,W) 

( )
F

µ d   Mean of ( | )F Gd
 

( )µµ d   Expected value of ( | )Gµ d  

( )σµ d
 

Expected value of ( | )Gσ d  

[ ]1 1[ ( | ) | , ( , )] |N i N i
N iE Var F G y+ − + −

+d y d w y   Expected value of 2 ( )F N iσ +d  (VAR) based on the 

observed data from the computer simulator y
N+i-1 and the next computer 

simulation y(dN+i,w) 

σ
2 Constant variance of the GP model 

2 ( )σ d , ( )σ d   Variance and standard deviation of the response y(d,W), which depends on d 

2 ( | )Gσ d , ( | )Gσ d   Variance and standard deviation of the response Y(G,d,W) 

2 ( )Fσ d , ( )
F

σ d
 

Variance and standard deviation of ( | )F Gd
 

2 ( )µσ d   Variance of ( | )Gµ d
 

2 ( )σσ d  Variance of ( | )Gσ d  

ω  Roughness parameters for the correlation function of a GP model  

Appendix A:  Gaussian process model Posterior mean and covariance 

In this appendix we briefly review the Bayesian analysis of a GP model (see [9] for more 

details). To begin, in the GP model approach one assumes the response y(d,w) is a single 

realization of a spatial random process with prior mean h(d,w)β, where h(d,w) is a row vector of 

regression functions (here we assume h(d,w) = 1) and β is a column vector of regression 

coefficients, and prior covariance of σ2
R((d,w),(d′,w′)), where σ2 is a constant and 
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R((d,w),(d′,w′)) is a Gaussian correlation function between the responses observed at (d,w) and 

(d′,w′). The Gaussian correlation function takes the form of 

 2 2

1 1

(( , ), ( , )) exp{ ( ) } exp{ ( ) }
d w

d

n n

i i i n j j j

i j

R ω ω +

= =

′ ′ ′ ′= − −∏ ∏d w d w d d w w  (18) 

where ω is a vector of roughness parameters. 

After observing the computer simulations yN at the input points {di, wi: i = 1, …, N}, the 

posterior distribution of the GP model for the response is Gaussian with a mean and covariance 

of (and given ω and σ2 with a non-informative prior for β) [36] 

 1

[ ( , ) | ] [ ( , , )]

ˆ ˆ( , ) ( , ) ( )

ˆ( , )

N

T N

E y E Y G

y d w

−

=

= + −

=

d w y d w

h d w β r d w R y Hβ  (19) 

 2 1

1 1 1 1

[ ( , ), ( , ) | ] [ ( , , ), ( , , ) | ]

{ (( , ), ( , ) ( , ) ( , )

( ( , ) ( , )) ( ) ( ( , ) ( , ))}

N N

T

T T T T T T

Cov y y Cov Y G Y G

Rσ −

− − − −

′ ′ ′ ′=

′ ′ ′ ′= −

′ ′ ′ ′+ − −

d w d w y d w d w y

d w d w r d w R r d w

h d w H R r d w H R H h d w H R r d w

 (20) 

where r(d,w) is a N × 1 vector whose ith element is R((d,w),(di,wi)). R is a N × N matrix whose 

ith row and jth column element is R((di,wi),(dj,wj)), H is a N × 1 vector whose ith element is 

h(di,wi), and 1 1 1ˆ [ ]T T N− − −=β H R H H R y . In the case ω and σ2 are unknown, one usually estimates 

their values using the maximum likelihood method [26]. These maximum likelihood estimates 

for ω and σ2 are then plugged into Eqs. (19) and (20). 

Appendix B:  Mean and variance of the robust design objective function 

The mean E[Y(G,d,W)] and variance Var[Y(G,d,W)], used in the robust design function 

of Eq. (10) can be derived in terms of the posterior distribution of the GP model. The derivation 

for the mean is 

 

[ ( , , )] [ [ ( , , ) | ]]

ˆ[ ( , )]

( )

E Y G E E Y G

E y

µµ

= =

=

=

d W d W W w

d W

d

. (21) 
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In the first line of Eq. (21), the expectation [ ( , , ) | ]E Y G =d W W w  is taken with respect to the 

posterior distribution of the GP model assuming a value of w for W, and the outer expectation 

E[•] is with respect to the noise variables W. Using a similar notation, the variance  

[ ( , , )]Var Y G d W  can be derived as 

 [ ( , , )] [ [ ( , , ) | ]] [ [ ( , , ) | ]]Var Y G E Var Y G G Var E Y G G= +d W d W d W , (22) 

which is a result of the law of total variance [37]. The [ ( , , ) | ]Var Y G Gd W  and [ ( , , ) | ]E Y G Gd W

are with respect to the noise variable and the outer E[•] and Var[•] are with respect to the 

posterior of the GP model. Using the notation in [9], we can rewrite [ ( , , )]Var Y G d W  as 

 2[ ( , , )] ( ) ( )SVar Y G µµ σ= +d W d d . (23) 

where ( ) [ [ ( , , ) | ]]S E Var Y G Gµ =d d W  and 2 ( ) [ [ ( , , ) | ]]Var E Y G Gµσ =d d W . Detailed equations 

for ( )µµ d , ( )Sµ d , and 2 ( )µσ d  can be found in [9].  
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List of Table Captions 

Table 1  Results after obtaining a total of 15 observations from the open box example. 

Table 2  Design and noise variables (with a normal distribution) for the piston design 

example. 
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List of Figure Captions 

Fig. 1  Objective-oriented sequential sampling. 

Fig. 2  (a) Response surface for y(d,w). (b) The robust design objective function for the open 

box example with d* = 1.34 m and f(d*) = $108.30. 

 
Fig. 3  Sequential sampling algorithm. 

Fig. 4  The first iteration of the sequential sampling algorithm using the open box example. 

Fig. 5  Sequential algorithm results for the open box example for (a) the location of dmin and 

fGW(dmin) and (b) the location of the sequentially added points (numbers indicate i) using 

the EI and MSE criteria. 

Fig. 6  Convergence behavior for the engine piston design example. Note the error bars have 

been moved right slightly for improved visualization. 
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Tables 

Table 1 

dN+i 
Criterion 

wN+i 
Criterion dmin fGW(dmin) σF(dmin) f(dmin) 

True Surface (d*) 1.34 -- -- 108.30 
EI MSE 1.34 108.23  0.02 108.30 

EI wMSE 1.37 108.46  0.27 108.38 

EI IMSE 1.31 108.02  0.41 108.40 

EI VAR 1.38 108.52  1.62 108.43 

PI MSE 1.35 107.83  0.22 108.31 

PI wMSE 1.35 108.29  0.04  108.32 

PI IMSE 1.33 108.20 0.20 108.30 

PI VAR 1.34 107.85 0.82 108.30 

One-shot (IU) 1.33 107.35 1.03 108.36 

One-shot (no IU) 1.33 106.57 1.03 108.36 
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Table 2 

Variable Description Nominal Value Range/Distribution 

d1 Skirt Profile (SP) 3 1 to 3 

d2 Pin Offset (PO) 0.9 0.5 to 1.3 mm 

d3 Skirt Length (SL) 23.07 21 to 25 mm 

d4 Skirt Ovality (SO) 2 1 to 3 

W1 Piston-to-bore Clearance (CL) -- N(50, (11)2) µm 

W2 
Location of Combustion Peak 
Pressure (LP) 

-- N(14.5, 12) deg. 
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Figures 
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