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We develop a Bayesian approach for monitoring and graphically exploring a process mean and informing
decisions related to process adjustment. We assume a rather general model, in which the observations are
represented as a process mean plus a random error term. In contrast to previous work on Bayesian methods
for monitoring a mean, we allow any Markov model for the mean. This includes a mean that wanders
slowly, that is constant over periods of time with occasional random jumps or combinations thereof.
The approach also allows for any distribution for the random errors, although we focus on the normal
error case. We use numerical integration to update relevant posterior distributions (e.g., for the current
mean or for future observations), as each new observation is obtained, in a computationally inexpensive
manner. Using an example from automobile body assembly, we illustrate how the approach can inform
decisions regarding whether to adjust a process. Supplementary Materials for this article, including code
for implementing the charts, are available online on the journal web site.
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Statistical process control.

1. INTRODUCTION

Control charts, and in particular Shewhart charts, have been
widely used in industry for decades. One shortcoming of Phase
II control charting is that the primary piece of information that
is produced—whether there is a statistically significant change
from the in-control state—is largely black and white. In con-
trast, engineering decisions regarding whether one should adjust
or intervene in the process are invariably driven by considera-
tions that come in many shades of gray: How sure are we that
process parameters have changed? How large was the change?
How far off target is the current process mean? What fraction of
the process distribution will fall out of specifications (or close
to the specification limits), both before and after any poten-
tial process intervention? Moreover, this potentially quantifi-
able information must be balanced with other, less quantifiable
considerations such as how costly (in time, physical resources,
lost production if the process must be shut down to make a
change, etc.) will the intervention be, whether key personnel are
available or have higher-priority concerns at the moment, the
negative consequences that the intervention might potentially
have on other areas of the process, etc.

The following example from automobile body assembly il-
lustrates these issues. To improve the dimensional control of
the automobile bodies, laser-optical measurement stations are
integrated into the assembly line. A number of critical dimen-
sional features are automatically measured on every autobody.
The desire is to keep the mean of each feature on target and
control variation about the mean. A reduction in variation typ-
ically requires the replacement of worn tooling or a redesign
of some portion of the assembly process. In contrast, a shift in

the mean away from the target can usually be corrected by a
“shim move,” which entails inserting thin metal shims of appro-
priate thicknesses into various tooling elements that locate the
sheet metal parts when they are joined. Inserting a shim changes
the position of the locating elements in a fixture. Because the
locating elements control the position of parts placed into the
fixture, a shim move effectively changes the mean of various di-
mensional features. The exact size of the mean change brought
about by a shim move is sometimes difficult to predict precisely,
and the appropriate shim thickness is often found by trial and
error. The process and measurement system are described in
more detail in the article by Apley and Shi (2001).

Process engineers meet frequently to review the data and to
decide whether shim moves or other interventions are required.
As mentioned earlier, control charts are not ideally suited for
informing decisions of this nature, because of their emphasis
on signaling statistical significance, without regard to practical
significance. Engineers must also assess whether a statistically
significant shift is large enough to warrant a shim move and
if so, how large a shim move to make, while taking into ac-
count the fact that there is uncertainty in the exact location of
the mean. One might consider a decision-theoretic approach, in
which one assumes a probabilistic model for the process, as-
signs costs to every aspect of action/inaction, and determines
the optimal shim move. A problem with this approach is that
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costs are virtually impossible to accurately specify for many
processes like autobody assembly. First, the true costs of an
off-target dimension are difficult to specify for many reasons,
one of which is that a great deal depends on what is happen-
ing downstream. Perhaps an off-target dimension will cause
major assembly difficulties or quality issues at a downstream
stage of the process; or perhaps the downstream operators have
improvised a reasonable way to compensate for an off-target
dimension and mitigate its adverse effects. Second, the costs
of performing a shim move are difficult to specify. If process
engineers currently have many other fires to put out elsewhere
in the process, then the hidden cost of a shim move may be very
high (because it takes resources away from other problems). On
the other hand, if it is a slow day, and there currently are no
other pressing problems, then devoting engineering manpower
to a shim move may entail very little additional cost. For these
and other reasons, process engineers usually do not want a fully
automated decision-theoretic algorithm to dictate when to take
action. More useful are easy-to-interpret graphical displays of
information that will help engineers balance the severity of the
problem with the myriad of other quantifiable and unquantifi-
able concerns, so that they can make a well-informed decision
on whether to intervene or adjust the process.

In this article, we investigate an alternative to Phase II control
charting that is better suited for these purposes. We assume that
the process observations {xt: t = 1, 2, . . .} are represented by
the rather generic model

xt = µt + εt , (1)

where εt is an iid random sequence, and µt represents the “mean”
of the process at observation number t. For flexibility, we allow
any Markov model for µt. Although we focus on the case of
normally distributed εt, the procedures that we describe in Sec-
tions 2 and 3 apply directly for an arbitrary distribution for εt,
providing one knows or can estimate the distribution. A special
case that we use to illustrate the approach is εt ∼ N(0,σ 2), and
µt constant over periods of time but with occasional jumps of
random magnitude and at random points in time, according to
the random jump (RJ) model

µt =
{

µt−1 : with probability 1 − p

µt−1 + N
(
0, η2

)
: with probability p

, (2)

where η and p are parameters.
As each new observation (say xt at time period t) is obtained,

we use a Bayesian analysis to update a set of relevant posterior
distributions, given all of the available data xt = {xj: j = 1,
2, . . . , t}, and then we chart the posterior distributions as they
evolve over time. Posterior distributions of particular interest
are those of µt | xt and of xt + 1 | xt. The distributions can be
plotted together with upper and lower specification limits (de-
noted by USL and LSL) and a target value (denoted by T),
which allows a graphical assessment of issues related to pro-
cess capability and whether adjustments or interventions should
be made. Numerical summaries of the posterior distributions,
such as the predicted fraction that falls outside of specifications,
can also be tabulated to aid in decision making. Figures 1–4
and the surrounding discussions in later sections illustrate the
various graphical and numerical results that can be produced in
the posterior distribution (PD) charts. The intent is to provide

diagnostic information and graphical displays that can inform
engineering decision making, in contrast to the Phase II control
charting intent of providing an automated signal when a process
parameter has changed.

There has been a substantial amount of previous work on
Bayesian methods to update the posterior distribution of µt | xt

in the context of control charting. Early works include those by
Barnard (1959) and Chernoff and Zacks (1964), who developed
Bayesian methods for tracking µt with a RJ model quite similar
to Equations (1) and (2). More recent works include those
by Crowder and Eshleman (2001), Tsiamyrtzis and Hawkins
(2005), and Triantafyllopoulos (2007), who developed Bayesian
methods for updating the posterior distribution of µt | xt under
different models for µt. Crowder and Eshleman assumed
a random walk (RW) µt. Tsiamyrtzis and Hawkins (2005)
assumed a RW µt with, in addition, jumps of fixed, prespecified
magnitude and direction, but at random times. Tsiamyrtzis and
Hawkins (2007) extended their model by, among other things,
allowing jumps of random size. Triantafyllopoulos (2007)
assumed a RW µt, where the variances of εt and of the RW
increments are unknown and must be tracked also. Woodward
and Naylor (1993) assumed a piecewise constant mean in
which the jump times are known (e.g., coinciding with when
known disturbances occurred).

In addition, many authors have proposed tracking the process
mean using Kalman filtering methods (Kalman 1960), which
have Bayesian interpretations for certain linear Gaussian mod-
els, such as when µt is a Gaussian RW, and εt is Gaussian
(see Meinhold and Singpurwalla 1983). For example, Down-
ing, Pike, and Morrison (1980) compared a Kalman filter to
a CUSUM control chart for an inventory control problem in
which three parameters were tracked; Crowder (1986) investi-
gated many aspects of Kalman filtering for statistical process
control (SPC); Wasserman and Sudjianto (1993), del Castillo
and Montgomery (1995), Sastri, Valdes, and Flores (1996), and
others have developed Kalman filters for tracking the mean and
other process parameters in the context of control charting. The
edited volume by Colosimo and del Castillo (2007) includes a
number of chapters on related methods and Bayesian analyses
for process monitoring, control, and optimization.

Other notable Bayesian control charting works include those
by Hamada (2002), Menzefricke (2002), and Bayarri and
Garcia-Donato (2005), who developed methods for setting the
control limits for various control charts, under consideration
of uncertainty in various distribution parameters. The control
limits are based on marginalizing the distribution of the charted
statistic with respect to the posterior distribution of the unknown
parameters, given xt (or given a Phase I set of data from which
in-control values for the distribution parameters must be in-
ferred). There is also a large body of work on Bayesian methods
for developing economically optimal inspection and decision
policies in a quality control setting (e.g., Girshick and Rubin
1952; Taylor 1967; Ross 1971; White 1977; Calabrese 1995;
Tagaras and Nikolaidis 2002).

This article is most closely aligned with the Bayesian meth-
ods for tracking µt, but our approach and presentation differ
from the previous work in the following respects. Most of the
previous work has placed a premium on having closed-form
analytical expressions for updating the posterior distributions,
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at the expense of imposing restrictive conditions on the model
and/or using simplifying approximations when deriving the pos-
teriors. Examples of restrictive conditions include disallowing
a RJ model, which seems a quite reasonable model for many
applications in which control charting is typically used, in favor
of the more tractable RW model; requiring all variables to be
Gaussian; and/or (for the RJ model) assuming the size of any
jump is fixed and known. In contrast, our use of numerical inte-
gration allows any Markov model for µt with no restrictions on
the distribution of εt. The only drawback of this added flexibility
is that numerical integration is required to update the posteri-
ors, but the overall computational expense is trivial considering
modern desktop computing power.

This work also differs from previous work in many of the
graphical implementation and interpretation issues on which
we focus our discussion. After describing the general process
model and the equations for updating the relevant posterior dis-
tributions in Section 2, we discuss various quantities that can
be charted and how to interpret the charts in Section 3. In Sec-
tion 4, we discuss Markov models for µt other than the RJ
model of Equation (2). In Section 5, we present design guide-
lines for selecting or estimating various PD chart parameters.
Section 6 presents Monte Carlo simulations that compare dif-
ferent Bayesian methods for tracking a mean and investigate
robustness to model misspecification. Section 7 concludes the
article.

2. UPDATING THE POSTERIOR DISTRIBUTIONS
FOR THE GENERAL PROCESS MODEL

Let h(ε) denote the distribution of εt, and let p(µ | ν) denote
the conditional distribution of µt given µt–1 = ν. The following
apply for arbitrary h(•) and p(• | •). In general, for two random
variables X and Y , let fX | Y (x | y) denote the conditional distribu-
tion of X given Y = y. For τ = 0, 1, 2, . . . n, and t = τ , τ + 1, τ

+ 2, . . . τ + n, define gµ

t |τ (µ) = fµt | X
τ(µ | xτ). Our strategy for

calculating gµ

t |t (•), the posterior distribution of µt | xt, is recur-
sive. That is, one begins with an initial distribution gµ

0|0 (•) and
calculates gµ

t |t (•) from gµ

t−1|t−1 (•) for t = 1, 2, . . . n, as each
new observation xt is obtained. A straightforward application of
Bayes’ rule gives

g
µ

t |t (µ) = fµt |Xt ,Xt−1 (µ| xt , xt−1)

= fXt |µt ,Xt−1 (xt |µ, xt−1) fµt |Xt−1 (µ| xt−1)∫
fXt |µt ,xt−1 (xt |ν, xt−1) fµt | Xt−1 (ν| xt−1)dν

= fXt | µt
(xt |µ) fµt | Xt−1 (µ| xt−1)∫

fXt | µt
(xt |ν) fµt | Xt−1 (ν| xt−1)dν

= h(xt −µ) gµ

t |t−1(µ)∫
h(xt −ν) gµ

t |t−1(ν)dν
. (3)

Similarly, the function gµ

t |t−1(•) is obtained from
gµ

t−1|t−1 (•) via

gµ

t |t−1 (µ) =
∫

fµt | µt−1,Xt−1 (µ|ν, xt−1) fµt−1 | Xt−1

(
ν| xt−1

)
dν

=
∫

p (µ|ν) gµ

t−1|t−1 (ν) dν, (4)

where the last equality follows from the Markov property of µt.

Together, Equations (3) and (4) are the recursions for calcu-
lating gµ

t |t (•) from gµ

t−1|t−1 (•), based on h(•), p(• | •), and the
newest observation xt. The main computational expense comes
from Equation (4). For each value of µ in the support of gµ

t |t (•),
one must perform the numerical integration in Equation (4).
The numerical integration in the denominator of Equation (3)
adds negligible computational expense, because it needs to be
carried out only a single time (it does not depend on µ). In
essence, it serves only to normalize the distribution gµ

t |t (•) so
that it integrates to one. If K denotes the number of discrete
points over the range of integration, the computational expense
of updating gµ

t−1|t−1 (•) to gµ

t |t (•) is proportional to K2. In all
of the examples discussed later, we used K = 500 and a uni-
form discretization. With K = 500, it took roughly 0.005 sec to
update gµ

t−1|t−1 (•) to gµ

t |t (•) in a MatlabTM environment on a
notebook computer with a 1.73 GHz Intel CoreTM i7 proces-
sor. This is far from prohibitive for almost any SPC application
that we envision. With such modest computational expense, we
recommend choosing K conservatively large to ensure that any
inaccuracies due to numerical approximation of the integrals are
negligible. One may wish to downsample gµ

t |t (•) when plotting
the posterior distributions (it may take longer to plot gµ

t |t (•) than
to update it). Regarding inaccuracies, we observed no apprecia-
ble difference in the posterior distributions when we increased
K from 500 to 1000.

Based on gµ

t |t (•), one can calculate a number of other relevant
posterior distributions, such as the predictive distribution of the
future observation xt + 1 | xt. Define gx

t |τ (x) = fXt | X
τ(x | xτ). If

we assume that the future mean is the same as the current one
(i.e., µt + 1 = µt, the rationale for which we discuss in the next
section), the posterior predictive distribution of xt + 1 | xt is

gx
t+1|t (x) =

∫
fXt+1 | µt+1

(x|µ) fµt+1 | Xt (µ| xt ) dµ

=
∫

h (x − µ) gµ

t |t (µ) dµ. (5)

Note that for computation and plotting purposes, the poste-
rior distributions (e.g., gµ

t |t (•)) are discretized over their support
and stored as vectors. This provides a completely nonparamet-
ric representation of the posterior distributions. One desirable
consequence of this is that multiple modes in the posterior may
emerge where the data imply they should, the importance of
which we illustrate in subsequent examples. Matlab code for im-
plementing the procedure and constructing the plots illustrated
in Section 3 is available as online Supplementary Materials for
this article.

3. SOME RELEVANT GRAPHICAL DISPLAYS AND
NUMERICAL CRITERIA

The generality that results from numerical calculation of the
posteriors in the recursions of Equations (3)–(5) allows a number
of possible graphical displays of various relevant information.
In this section, we discuss a few possibilities and illustrate with
the autobody assembly example introduced in Section 1. The
example data {xt: t = 1, 2, . . . , 30} are measurements of one
critical autobody dimension for a sample of 30 consecutively
produced automobiles. The data, which are in units of mm,
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Figure 1. PD chart showing xt (∗ connected by dashed lines) with upper and lower specification limits and a target, together with the posterior
distributions of µt | xt for the autobody data. The horizontal scaling of the posteriors is for visual convenience.

are plotted in Figure 1. The target and specification limits are
T = 1.0, LSL = 0.3, and USL = 1.7. Notice that some of the
measurements in Figure 1 are negative. This is an artifact of
the choice for the origin of the measurement coordinate system,
which has little physical significance.

We assume the RJ model of Equation (2) for µt and a normal
distribution for εt. We chose p = 0.05, η = 4σ , and σ = 0.27 as
parameters of the model (Section 5 discusses choice/estimation
of parameters), and we chose a starting distribution gµ

0|0 (•) =
N(1.02,0.052). For the RJ model with normal εt, h(ε) = σ−1

φ(ε/σ ) and p(µ | ν) = p̃ (µ|ν) + (1 − p)δ(µ − ν), where
p̃(µ|ν) = pη−1φ((µ−ν)/η), and φ(•) and δ(•) denote the
standard normal density function and the Dirac delta function,
respectively. The delta function component is a convenient
notation for indicating that p(µ | ν) has mass 1−p at µ = ν and
for allowing us to write the integral in Equation (4) without
distinguishing between discrete and continuous random vari-
ables. Since the Dirac delta function is infinitesimally narrow,
it cannot be directly included in p(µ | ν) when performing the
numerical integration in Equation (4). Instead, one should use
gµ

t |t−1 (µ) = ∫
p̃ (µ|ν) gµ

t−1|t−1 (ν) dν + (1 − p) gµ

t−1|t−1 (µ).
The integral of Equation (4) should be computed in a like
manner whenever there is a point mass in p(µ | ν).

Figure 1 also shows the posteriors gµ

t |t (•) for the process
mean at each of the 30 observations. It appears that for the
first 15 observations, the mean is close to the target, but that
a substantial downward shift occurred around observation 16.
The behavior of gµ

t |t (•) immediately after the mean shift is quite
interesting. Because x16 fell far below the support for the mean
at the previous observation 15, gµ

16|16 (•) is bimodal with one
mode near the mode for the previous mean (µ ≈ 1.05) and
the other mode near x16. This is due to the nature of the RJ
model. The same is true for gµ

17|17 (•), except much more mass
is allocated to the mode around x16 and x17. At this point, the
posterior probability that the mean has changed is quite high.
The algorithm has “second thoughts” at observation 18 (i.e.,

the mode near µ ≈ 1.0 gains mass) because x18 happens to be
quite high. After the next few observations are obtained, which
are all well below 1.0, gµ

t |t (•) evolves into a relatively stable
distribution with posterior mean around µ ≈ 0.55, which is
closer to the LSL than to the target. This, together with Figure 4
discussed later, would support arguments for process engineers
to make a shim move to bring the mean back on target. After
adjusting the process, one would begin the PD chart anew with
a new estimate of σ if the adjustment also caused the standard
deviation to change.

Similarly, the quite low value for x29 also caused a smaller
but discernible second mode (centered around x29) to begin to
develop in gµ

29|29 (•). However, because this appears to be a
single outlier observation, and x30 is back near the average of
the observations between 16 ≤ t ≤ 28, this second mode is not
carried over to gµ

30|30 (•).
When comparing gµ

t |t (•) to the specification limits, one should
keep in mind that LSL and USL are specification limits on x,
not on µ. However, we think that adding specification limits
to the plot helps to put the location and spread of gµ

t |t (•) into
perspective and also makes it easier to visually compare this
chart to charts showing gx

t+1|t (•) (e.g., Figure 4, discussed later).
Another word of caution is regarding the interpretation of the

PD chart. Let N denote the time index for the most recent obser-
vation (N = 30 in Figure 1). Recall that the posterior gµ

t |t (•) for
t < N is conditioned on only the data xt and not on the entire
data xN. Hence, the last posterior gµ

N |N (•) is the only one that
is conditioned on all the data. If one calculated and plotted the
posterior of µt | xN for t = 1, 2, . . . , N, then the posteriors
around the middle of the data would almost certainly indicate
an abrupt shift at t = 16 with much higher probability than is
implied by gµ

16|16 (•) in Figure 1. This would be preferable from
the viewpoint of retrospectively analyzing the entire dataset.
However, we avoid this for two reasons: First, the PD chart is
meant to be used in Phase II and updated as each new observa-
tion is obtained, with primary focus on the state of the process
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Figure 2. PD chart showing xt (∗ connected by dashed lines) and the upper and lower 0.025 quantiles (+ marks connected by vertical lines)
of the posterior distribution of µt | xt for the autobody data.

at current time N. Second, it would be substantially more com-
plicated to update the posterior of µt | xN for t = 1, 2, . . . , N,
which is proportional to f X

t,N
| µt(xt,N | µ)gµ

t |t (µ), where xt,N =
{xt+1, xt+2, . . . , xN}. The term f X

t,N
| µt (x

t,N | µ) would generally
be intractable. Crowder and Eshleman (2001) discussed updat-
ing µt | xN for the special case of a Gaussian RW model for µt,
in which case f X

t,N
| µt (x

t,N | µ) is jointly Gaussian.
If N is large, it can be visually cumbersome to plot each

gµ

t |t (•) for t = 1, 2, . . . , N. An alternative in this case is to
plot certain quantiles of gµ

t |t (•) for most t and only plot the full
posterior for a few t (e.g., t = N). Figure 2 shows the upper

and lower 0.025 quantiles for the gµ

t |t (•) shown in Figure 1, and
Figure 3 (discussed later) shows similar quantiles with the full
distributions shown only for t = 30. The quantile interval can be
viewed as a two-sided 1−α Bayesian credible region (Bernardo
and Smith 2002) for µt with α = 0.05. Crowder and Eshle-
man (2001) also plotted quantiles of the posterior of µt without
plotting the full distribution. Because they only considered the
Gaussian RW model for µt, for which the posteriors of µt are
also Gaussian, little information was lost by plotting only the
quantiles. However, for the RJ model, plotting only the quantiles
can be misleading. Consider the posteriors for time indices 16,

0 5 10 15 20 25 30
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1.5
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t
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Figure 3. PD chart showing xt (∗ connected by dashed lines) and the posterior distributions of µt | xt and of xt + 1 | xt for the autobody data.
The full posteriors are shown for t = 30, and the upper and lower 0.025 quantiles (+ marks for gµ

t |t (•) and ♦ marks for gx
t+1|t (•)) are shown for

each t. gµ

30|30 (•) is plotted to the left of the vertical line at t = 30, and gx
31|30 (•) to the right.
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Figure 4. Estimated fraction outside of specifications for the autobody data: (a) PD chart showing xt (∗ connected by dashed lines) and the
posterior predictive distribution of xt + 1 | xt with its upper and lower 0.025 quantiles (♦ marks); (b) estimated fraction outside of specification
limits, obtained by integrating gx

t+1|t (x) over values of x outside the specification limits.

17, and 18 plotted in Figure 1. Because these are bimodal, there
is very small probability that the mean is a mid-range value
(e.g., µ ≈ 0.8 or 0.9). This fact is obscured in Figure 2.

There are a number of alternatives that would less obscure
multimodal characteristics, while avoiding the visual clutter of
plotting entire posterior distributions. One possibility is to dis-
play box plots, which Hoadley (1981) considered for a related
problem involving the parameter of Poisson data. Another pos-
sibility is to calculate a highest posterior density (HPD) credible
region for µt, instead of using the interval between the upper
and lower α/2 quantiles. This would reveal multimodal charac-
teristics if the posterior density between modes drops to suffi-
ciently small values. Perhaps the most attractive approach for a
commercial software implementation would be to plot credible
regions for µt, but have the full posteriors pop up if the user
drags the cursor over a particular quantile. For example, after
inspecting Figure 2, a user might conclude that the posteriors

at time indices 16–18 are so dispersed that they bear further
scrutiny.

In general, it is useful to see the posterior distribution of µt | xt

relative to the specification limits and the target. In terms of
understanding the impact of a mean shift on process capability
over the near future production, it is also useful to compare
the posterior predictive distribution of xN+k | xN (denoted by
gx

N+k|N (•)) to the specification limits for certain k ≥ 1. Figure 3
shows this for k = 1 and under the condition that µN+1 = µN. A
visual inspection gives one an approximate idea of the fraction
of production that would fall out-of-specifications if the process
were to continue to operate with no further change in the mean.
The condition that there is no further mean change is not in
strict agreement with the Markov model for the mean, but it
could be nonetheless useful for interpretation purposes. Based
on gx

31|30 (•) in Figure 3, for example, the estimated fraction
below the LSL is 22.5%, which would strengthen the argument
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Figure 5. At time indices t = 16 (for panel (a)) and t = 30 (for panel (b)), plots of gµ

t |t (µ), gx
t+1|t (x), and f Xt+1 | µt+1 (x | µ̂t ). At t = 16, the large

uncertainty in µ16 inflates the dispersion of gx
t+1|t (x).

for process engineers to make a shim move to bring the mean
back on target.

One could also chart any of a number of statistics related to
process capability, based on the distribution gx

t+1|t (•). Because
gx

t+1|t (•) may be quite far from being normally distributed (see
Figure 5(a), discussed below), process capability indices like Cp

and Cpk could be misleading. Instead, it might be preferable to
directly chart the estimated fraction that falls outside of the spec-
ification limits. This is obtained by integrating gx

t+1|t (x) over the
range of x values outside the specification limits. Figure 4 charts
the estimated fraction outside of specifications in conjunction
with gx

t+1|t (x), for the autobody data.
When interpreting gx

t+1|t (•), one should keep in mind that
its dispersion reflects any uncertainty in the mean, as well as
true process variation. By “true process variation,” we mean
the dispersion of h(ε), the conditional distribution of xt+1 |
µt+1. This widening of gx

t+1|t (•) due to uncertainty in the mean
is most extremely following a sudden mean shift, such as at
time index 16 in Figures 1–4, at which time there is much
uncertainty in where µt lies. Figure 5(a) better illustrates this
by plotting the following for t = 16: gµ

t |t (µ), gx
t+1|t (x) (again

under the assumption that µt+1 = µt), and fXt+1 | µt+1(x | µ̂t ) =
h(x−µ̂t ). Here, µ̂t denotes the mean of gµ

t |t (µ), which can be
viewed as a point estimate of µt. Figure 5(b) shows the same,
except at time index t = 30. Note that µ̂16 = 0.56, and µ̂30 =
0.52. From Figure 5(a) it appears that at time index 16, as much
of the dispersion of gx

17|16 (x) stems from the uncertainty in
µ16 as from the conditional variance of x17 | µ17. In contrast,
Figure 5(b) shows that at time index 30, most of the dispersion
of gx

31|30 (x) comes from the conditional variance of x30 | µ30,
because the uncertainty in µ30 is relatively small. If one plots
gx

t+1|t (•) in the PD chart, one could also plot the conditional dis-
tribution of xt+1 | µt+1 as a reference, to help convey how much
of the dispersion of gx

t+1|t (•) is due to uncertainty in the mean.

Another numerical summary of the posterior distributions at
each time t that might be relevant is the posterior probability that
the mean differs from the target by more than some specified
value c, where c is chosen to represent the smallest mean differ-
ence that is of practical interest. In the autobody example, the
smallest shim thickness is 0.1 mm. Hence, one might choose
c = 0.1 in this case and adjust the process mean via a shim
move only if the posterior probability that µt �∈ [T − c, T + c]
is sufficiently large.

The posterior probability can be obtained by numerically
integrating gµ

t |t (•) outside the interval [T − c, T + c]. A proce-
dure such as this is reminiscent of algorithmic process adjust-
ment schemes. However, we do not envision this being used as
part of a formal algorithm for dictating when to make adjust-
ments. As discussed in the introduction, there are often many
other considerations—quantitative and qualitative—that must
be weighed when deciding whether to make an adjustment. For
example, even if there is a high probability that µt �∈ [T − c, T +
c], one might assign very low priority to making an adjustment
if the estimated fraction outside of specification limits (assessed
via something like Figure 4) is negligibly small.

4. OTHER MARKOV MODELS FOR µt

In the examples up to this point, we have focused on processes
that are iid with occasional abrupt shifts in the mean, which can
be represented by the RJ model. However, the general Markov
model for µt assumed in Equations (3)–(5) can accommodate
many types of wandering or autocorrelated µt, with or without
random jumps. For example, a first-order autoregressive model
for µt is a Markov model. Likewise, if µt is modeled as the sum
of a first-order autoregressive process plus a random jump com-
ponent, the result is still a Markov model. A proper treatment
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Figure 6. Plot of p(µ | ν) = p(µ−ν) for the RJ+RW model.

of autocorrelated processes is beyond the scope of this article.
Instead, in this section, we focus on some simple models related
to the RJ and RW models for µt.

4.1 Random Jump Plus Random Walk (RJ+RW) Model

In the random jump plus random walk (RJ+RW) model, we
represent µt as the sum of a RJ component (with small p) and a
RW component via

µt =
{

µt−1 +N
(
0, β2

)
: with probability 1 − p

µt−1+N
(
0, β2

)+N
(
0, η2

)
: with probability p

,

(6)

where β is typically small (e.g., β/σ < 0.2), and η is typically
large (e.g., η/σ > 3). The interpretation is as follows: At any
fixed point in time, with some small probability p the mean
will experience a random jump that is perhaps quite large (η
represents the standard deviation of the jump magnitude). If no
random jump occurs at that point in time, then the mean takes a
small step as would a RW (β represents the standard deviation
of the RW increments). The transition probability density for
the RJ+RW model is

p (µ|ν) = p√
β2 + η2

φ

(
µ − ν√
β2 + η2

)
+ 1 − p

β
φ

(
µ − ν

β

)
.

(7)

Figure 6 is a plot of p(µ | ν) for the RJ+RW model with p =
0.3, η = 4, and β = 0.2. Notice that for the RJ+RW model,
p(µ | ν) depends on µ and ν only via their difference µ − ν. We
chose an overly large value of p = 0.3 for Figure 6 so that the RJ
component of the density would be discernible in the plot. The
RJ and RW components of p(µ | ν) are defined as the first and
second terms of Equation (7), respectively. For the RJ model,

p(µ | ν) is the same as shown in Figure 6, except that the RW
component is replaced by a point mass at µ − ν = 0.

4.2 Fixed-Size RJ+RW Model of T&H (2005)

We refer to the model by Tsiamyrtzis and Hawkins (2005)
as the T&H model. It is similar to the RJ+RW model, except
that the size(s) γ of the random jump is assumed known and is
a prespecified parameter of the algorithm. Mathematically, the
T&H model is xt = µt + εt with εt ∼ N(0,σ 2) and iid and a
Markov model

µt =
{

µt−1 +N
(
0, β2

)
: with probability 1 − p

µt−1 +N
(
0, β2

)+ γ : with probability p
,

for the mean. To allow for more than one size jump, one can
specify a set of γ values and a corresponding set of p-values. For
example, using p = {0.005, 0.005} and γ = {1, − 3}means that
the probability of experiencing a random jump at any time t is
0.01, and this probability is equally divided between a positive
jump of magnitude 1.0 and a negative jump of magnitude 3.0.

The T&H method evaluates the posterior distributions ana-
lytically, as opposed to the numerical evaluation of this article.
For a single specified jump size γ , the posterior gµ

t |t (•) is a mix-
ture of 2t normal distributions. For two or more specified jump
sizes, the number of component distributions in the mixture
further explodes. T&H recommended using one or two jump
sizes and truncating the number of component distributions in
the mixture to only the most probable. For any number of jump
sizes, however, the T&H model is a special case of the Markov
model that we consider. Consequently, the T&H method can be
implemented exactly (aside from any inaccuracies due to the
discretization used in the numerical integration, which can eas-
ily be rendered negligible) with quite moderate computational
expense using the method of this article. Retaining the weights
for the mixture components in the analytical implementation of
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T&H can be useful for diagnosing when the shift occurred. The
plots discussed in Section 3 can also serve this purpose.

4.3 RJ+RW Model of Tsiamyrtzis and Hawkins (2007)

Tsiamyrtzis and Hawkins (2007) extended the T&H model
in a number of ways. First, they removed the restriction of a
fixed jump size. Instead, they represented the unknown jump
size γ using an N(γ 0,η2) normal distribution as in the RJ and
RJ+RW models of Equations (2) and (6), but with a nonzero
prior mean γ 0 allowed in case one knows that shifts in one
direction are more likely. Second, instead of choosing a fixed p,
they used a beta prior distribution for p (independent of γ ) and
then marginalized all posterior distributions with respect to the
prior for p. Third, instead of updating the posterior of µt | xt, they
update the joint posterior of (µt, σ 2) | xt. They assume the ratios
η/σ and β/σ are known. Although they update the posterior of
σ 2, it is not for the same tracking purposes as is the updating
of the posterior of µt, because they assume σ remains constant
over time (in contrast to the time-varying µt). Their primary
purpose for updating the posterior of σ 2 | xt is to provide a type
of self-starting feature that avoids having to estimate σ from
a set of Phase I data. In contrast, our objective is not a self-
starting procedure, and we assume that one can estimate σ with
sufficient precision from a set of Phase I data, as described in
Section 5.

Although Tsiamyrtzis and Hawkins (2007) assumed a “prior”
for p, they did not use this to produce an updated posterior for p |
xt. Instead, they marginalized what is their equivalent of p(µ | ν)
with respect to the prior of p in the same way that p(µ | ν) is
marginalized with respect to the normal distribution for γ . For
a fixed, specified σ (i.e., a point mass posterior for σ 2, instead
of the actual posterior calculated by Tsiamyrtzis and Hawkins
(2007)) and γ 0 = 0, it is straightforward to show that this is
equivalent to using the RJ+RW p(µ | ν) in Equation (7) with

p replaced by its marginal prior mean. Consequently, we re-
fer to the Tsiamyrtzis and Hawkins (2007) approach as using
the RJ+RW model. However, we reiterate that the Tsiamyrtzis
and Hawkins (2007) algorithm is somewhat different than the
RJ+RW algorithm in this article in that they also updated
the posterior of σ 2 for the self-starting (as opposed to adaptive
tracking) purposes discussed in the preceding paragraph and
then marginalized other quantities with respect to the posterior
of σ 2.

4.4 Marginalized RJ Model

The RJ model is an attractive model for many manufactur-
ing processes, considering the large body of traditional control
charting work that has assumed process data are iid with occa-
sional abrupt mean shifts. However, one must specify p and η,
and performance depends on the choices for these parameters,
as we illustrate with the following example. Figure 7 shows 60
simulated observations that follow a normal distribution with
σ = 1. The mean is zero for the first 20 observations. A small
positive mean shift (of size 1σ ) was added at t = 21, and a larger
negative mean shift (of size 3σ ) was added at t = 41. Figure
8(a) and 8(b) compare the PD chart behavior for RJ models with
small p and large η (p = 0.01 and η = 4σ ) versus for large p
and small η (p = 1 and η = 0.15σ , which reduces to a RW
model), respectively. The PD chart with small p and large η in
Figure 8(a) reacts quickly to the large mean shift at t = 41. By
observation 43, the distribution of µt | xt is nearly centered on
the new mean. In contrast, the PD chart with large p and small η

in Figure 8(b) reacts very slowly to the large mean shift. Even by
observation 55, the distribution of µt | xt is still not centered on
the new mean. The relative performance is reversed for tracking
the small mean shift that was introduced at t = 21: The PD chart
with large p and small η does a better job of tracking the small
shift. One can see in Figure 8(b) that the distribution of µt | xt is
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Figure 7. A set of simulated observations with a small 1σ mean shift at t = 21 and a large −3σ mean shift at t = 41. The solid horizontal
lines indicate the true process mean. PD charts for these data for different values of p and η are compared in Figure 8.
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Figure 8. PD charts showing xt (∗ connected by dashed lines) from Figure 7 and the posterior distributions of µt | xt for time indices 17–55.
Three different Markov mean models were used: (a) RJ model with p = 0.01, η = 4σ ; (b) RJ model with p = 1.0, η = 0.15σ ; and (c) marginalized
RJ model with {(αj, ηj): j = 1,2,3} = {(0.01, 4), (0.1, 1), (0.25, 0.2)}. The solid horizontal lines indicate the true process mean.
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nearly centered on the new mean by observation 28. In contrast,
even at observation 40, the distribution of µt | xt for small p
and large η in Figure 8(a) remains centered well below the new
mean.

An alternative to specifying a single (p, η) is to assume some
joint distribution for (p, η) that has mass both at (small p, large
η) values and at (large p, small η) values. For simplicity, sup-
pose the distribution is discrete with mass wj at (pj, ηj) for J
distinct combinations {(pj, ηj): j = 1, 2, . . . , J}. Marginalizing
p(µ | ν,p,η) = pη − 1φ((µ − ν)/η) + (1 − p)δ(µ − ν) for the RJ
model with respect to the joint distribution of (pj, ηj) gives

p(µ|ν) =
J∑

j=1

wj p(µ|ν, pj , ηj )

=
J∑

j=1

αj

1
ηj

φ

(
µ − ν

ηj

)
+ αJ+1 δ (µ − ν) , (8)

which is a mixture of J zero-mean normal distributions, the jth
of which has standard deviation ηj and weight αj = wjpj, plus
a point mass αJ+1 = 1 −∑J

j=1 αj at µ − ν = 0 (which corre-
sponds to the no-jump situation µt = µt − 1). This is equivalent
to modifying the RJ model of Equation (2) so that µt = µt − 1 +
N(0,ηj

2) with probability αj (j = 1, 2, . . . , J+1), where ηJ+1 =
0 corresponds to no jump. For J = 2 with η1

2 = η2 + β 2, η2
2 =

β 2, α1 = p, and α2 = 1 − p, this reduces to the RJ+RW model
of Equation (7).

The marginalization in Equation (8) has a different effect
than the marginalization with respect to p in the Tsiamyrtzis
and Hawkins (2007) approach. In the latter, it is straightforward
to show that the marginalization with respect to p serves only to
replace p by E[p] in Equation (7). In addition, the further level
of marginalization in Equation (8) with respect to the standard
deviation η of the random jump is not present in the Tsiamyrtzis
and Hawkins (2007) approach.

Figure 8(c) shows the results for the marginalized RJ model
with J = 3 and {(αj, ηj): j = 1,2,3} = {(0.01, 4), (0.1, 1), (0.25,
0.2)}, which represent large (η = 4σ ), medium (η = σ ), and
small (η = 0.2σ ) sized shifts, respectively. In this case, the PD
chart does an excellent job of tracking both the small shift and
the large shift. We further demonstrate this using Monte Carlo
simulation in Section 6.

5. SELECTION OF PARAMETERS AND PHASE I
ANALYSIS

To implement PD charts, one must specify a number of quan-
tities: The Markov transition function p(• | •) that defines the
behavior of µt; the standard deviation of εt in the normal case
(more generally, the distribution h(•) of εt); and an initial dis-
tribution gµ

0|0 (•) for the mean. Unless one requires accurate
estimation of gµ

t |t (•) at very early t, choice of gµ

0|0 (•) is not
critical. As t increases, the choice of gµ

0|0 (•) has little influence
on the posterior gµ

t |t (•) because of the sequential nature of the
approach. Consequently, we recommend a relatively diffused
distribution for gµ

0|0 (•). Regarding p(• | •), if one has reasonable
knowledge of the distribution of the jump sizes (reflected by η)
and jump frequency (reflected by p), then the RJ model can be
used. In the absence of such knowledge, we recommend using

the marginalized RJ model with J = 3 and {(αj, ηj): j = 1,
2, . . . , J} chosen to represent large shifts that occur with low
probability (e.g., α = 0.01, η = 4σ ), moderate shifts that occur
with moderate probability (e.g., α = 0.1, η = σ ), and small
shifts that occur more frequently (e.g., α = 0.25, η = 0.2σ ).
As discussed in the previous section, this is equivalent to using
the RJ model but marginalizing with respect to a discrete prior
distribution on the unknown (p, η) pair. Based on extensive sim-
ulations (some of which are shown in Section 6 and in the online
Supplementary Materials for this article), we have observed that
the preceding choices result in quite good tracking performance
for a range of shift sizes, and the performance is also robust to
moderate variations in the αj values.

For the preceding, we recommend against using large αj in
conjunction with large ηj. This would only be appropriate if one
expects a drastically unstable process that experiences very fre-
quent and very large jumps, but in this case it would seem more
advisable to identify and remove the source of the instability
than to track a mean that is known to change by large amounts
at nearly every observation. If one did use large αj in conjunc-
tion with large ηj, the posterior distribution of µt | xt would jump
around dramatically from observation to observation.

For certain parameterizations of h(•) and p(• | •), one might
consider using Bayesian or maximum likelihood methods to es-
timate all quantities from a set of Phase I data. For example, for
Gaussian h(•) and a RJ p(• | •), the Markov chain Monte Carlo
(MCMC) approach by McCulloch and Tsay (1993) can be used
to calculate Bayesian estimates of p, σ , and η, as well as the jump
times and magnitudes over the Phase I data. For more general pa-
rameterizations, this would be substantially more difficult, and
we also caution against it for other reasons. First, given that xt =
µt + εt, there are obvious identifiability issues, unless one places
restrictions on p(• | •) that discourage large, frequent changes in
µt. With a RJ p(• | •), for example, a Bayesian estimation algo-
rithm might have tendency to overfit by estimating p ≈ 1 and
η large, which attributes most of the variability in xt to µt. To
avoid this, McCulloch and Tsay (1993) recommended choosing
a prior for p that places most of its mass around small val-
ues, which assumes that the random jumps in µt are infrequent.
Alternatively, one could choose a prior that allowed for large
values of p, but restrict η to small values. This would allow for a
slowly varying µt that behaves similarly to the RW model. The
second reason we caution against estimating p(• | •) from Phase
I data is related to the first: Either of the assumptions for ensur-
ing better identifiability (either infrequent jumps in µt or slowly
varying µt), which are natural ones to make in control charting
applications, imply that very long segments of data are required
to estimate p(• | •). Moreover, p(• | •) represents variability in
the process mean, which, from the standard control charting per-
spective, is reflective of out-of-control process behavior. If the
Phase I data are “in-control” (e.g., within the framework of the
RJ model, if µt experiences no jumps over the Phase I data),
then there is no information available with which to estimate
the parameters of p(• | •). This difficulty does not exist in stan-
dard control charting, unless one wishes to optimize the chart
for a particular type of anticipated mean shift, because standard
control charts are designed around in-control process behavior.

In light of this, we recommend the marginalized RJ model
with the preceding guidelines for {(αj, ηj): j = 1, 2, . . . ,

TECHNOMETRICS, AUGUST 2012, VOL. 54, NO. 3



304 DANIEL W. APLEY

J}, which takes into account uncertainty in (p, η). We also
recommend the following procedure for estimating the error
standard deviation σ for the normal h(•). Assume that one has
available a set of Phase I data, and let M denote the number of
Phase I observations. The procedure is summarized as:

Step 1. Calculate suitable estimates {µ̂t : t = 1, 2, . . . , M} of
the mean over the Phase I data.

Step 2. Calculate {et = xt − µ̂t : t = 1, 2, . . . , M} as estimates
of εt over the Phase I data.

Step 3. Estimate σ from {et: t = 1, 2, . . . , M} using a simple
procedure that borrows from Shewhart control charting.

More specifically, if one applies Shewhart X̄ and S or R
charts (or individual and moving range charts for data collected
as individual observations) to the Phase I data, and the data
are in-control, then the procedure is straightforward. Because
an in-control process implies that the mean is stable, one can
set µ̂t (t = 1, 2, . . . , M) equal to the grand average of the
Phase I data and take {et: t = 1, 2, . . . , M} to be the Phase I
observations minus the grand average. Notice that in the context
of the marginalized RJ model, an in-control dataset means that
either there was no random jump over the duration of the data or
the mean has wandered by only a negligible amount (e.g., due to
an (αj, ηj) pair with small ηj but larger αj) that was insufficient
to cause an alarm in the Shewhart chart.

Continuing the previous autobody example, Figure 9 shows
Shewhart individual and moving range charts for a set of M =
92 individual Phase I observations. The upper and lower control
limits (UCL and LCL) and center line (CL) were based on a
grand average of 1.02 and an average moving range of 0.309

(see Section 6.4 of by Montgomery 2009, for details on control
limit calculation). Because both charts indicate that the process
is in-control, we will take µ̂t = 1.02 for all t. Subtracting this
from the data gives {et: t = 1, 2, . . . , 92}, a histogram and
autocorrelation plot of which (not shown for brevity) indicate
that the data are close to normal with little autocorrelation.
Hence, we have used the normal, iid error model with standard
deviation σ = 0.27, which was estimated as the average moving
range divided by the constant d2 = 1.128.

The situation is less straightforward if the Phase I data are
out-of-control. First, consider the situation in which the Phase I
data are collected according to rational subgrouping principles,
in m subgroups, each of size n observations, with an attempt to
ensure that µt does not change appreciably within most of the
subgroups. This is reasonable in the marginalized RJ model if
n is small and each subgroup consists of consecutive observa-
tions. This assumption is also the basis for the standard Phase I
approach for estimating the in-control parameters in Shewhart
control charting. The X̄ and S (or R) charts constructed for the
Phase I data can be used to verify whether the mean was indeed
constant over each subgroup, because large mean shifts within
a subgroup tend to cause points on the S chart to plot out-of-
control. In the approach described in the following paragraph,
any mean shifts that occur between subgroups will not adversely
affect the estimation of σ . However, a mean shift within a sub-
group will inflate the estimate of σ . Hence, any subgroups that
plot out-of-control on an S chart (or are otherwise suspected of
having a mean shift within the subgroup) should be removed
from the analysis.

After removing all subgroups within which the mean may
have changed, one can calculate the errors over the Phase I data
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Figure 9. Shewhart individual (top panel) and moving range (bottom panel) charts for a set of Phase I observations for the autobody example.
The process is in-control with an estimated mean of 1.02.
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via {ei,j = xi,j −µ̂i : i = 1, 2, . . . , m; j = 1, 2, . . . , n}, where xi,j

and µ̂i denote the jth observation from the ith subgroup and the
average of the ith subgroup, respectively. An unbiased estimate
of the variance of εt is

σ̂ 2 = 1

m (n − 1)

m∑
i=1

n∑
j=1

e2
i,j .

If the Phase I data were originally collected as individual
observations without rational subgrouping, and Shewhart in-
dividual and moving range charts indicate that the data were
out-of-control, the most appropriate approach for estimating σ

is less clear. In this case, we recommend artificially subgroup-
ing the data into m subgroups of n consecutive observations.
As in the rational subgrouping situation, n should be small to
help ensure that the mean is constant within each subgroup. The
remainder of the procedure reduces to that described previously
for the rational subgrouping situation.

6. COMPARISON OF BAYESIAN TRACKING
METHODS

In this section we use Monte Carlo simulation to compare
the performance of various Bayesian methods for tracking the
mean. Figure 10 shows box plots of µ̂t (the mean of gµ

t |t (•)) for
five different methods for tracking the same step mean function
used in the example of Figure 8 with σ = 1. The solid line is the
true mean {µt: t = 1, 2, . . . , N} over the N = 60 time points
in the simulation. Comparing the box plots to the true mean
provides an indication of the tracking effectiveness of the point
estimator µ̂t for each method.

The five methods considered are the posterior mean estima-
tors for five different models: (a) the RJ+RW model with p =
0.01, η = 4, β = 0.1; (b) the RJ model with p = 0.01, η = 4; (c)
the marginalized RJ model with {(αj, ηj): j = 1, 2, 3} = {(0.01,
4), (0.1, 1), (0.25, 0.2)}; (d) the T&H model with p = {0.005,
0.005}, γ = {1, −3}, β = 0.1; and (e) the T&H model with p =
{0.005, 0.005}, γ = {1, −1}, β = 0.1. Recall that the RJ+RW
model is nearly identical to the Tsiamyrtzis and Hawkins (2007)
model but with a fixed value for σ that is not updated over the
Phase II data (see Section 4).

Comparing Figure 10(a)–10(d), the RJ+RW model and the
marginalized RJ model perform comparably to the T&H model
with γ = {1, −3}. The latter can be viewed as a benchmark
for this example, because the true jump sizes were also 1 and
−3, giving the T&H model with γ = {1, −3} somewhat of
an unfair advantage for this example. Figure 10(e), which is
the T&H model with γ = {1,−1}, illustrates the consequences
of incorrectly specifying the jump size(s) in the T&H method.
The large negative jump at t = 41 is tracked very poorly in this
case. The marginalized RJ model reacts more quickly than the
RJ+RW model for tracking the smaller mean shift, but slightly
less quickly for tracking the large shift. This is not surprising
when one considers that the RJ+RW model is a special case
of the marginalized RJ model with J = 2, (α1, η1) = (0.01,
4.01), and (α2, η1) = (0.99, 0.1). Hence, the RJ+RW model is
marginalized for very large shifts (η ≈ 4σ ) and very small shifts
(η ≈ 0.1σ ), but not for moderate shifts.

0 5 10 15 20 25 30 35 40 45 50 55 60
-4

-3

-2

-1

0

1

2

3
-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

(a)

(b)

(c)

(d)

(e)

Figure 10. Box plots of µ̂t (vertical axis) versus t (horizontal
axis) for tracking a step mean (solid line) over 1000 replicates using:
(a) RJ+RW model with p = 0.01, η = 4, β = 0.1; (b) RJ model with
p = 0.01, η = 4; (c) marginalized RJ model with {(αj, ηj): j = 1,2,3}=
{(0.01, 4), (0.1, 1), (0.25, 0.2)}; (d) T&H model with p = {0.005,
0.005}, γ = {1,−3}, β = 0.1; and (e) T&H model with p = {0.005,
0.005}, γ = {1,−1}, β = 0.1. The online version of this figure is in
color.

7. CONCLUSIONS

In this article, we have developed a Bayesian approach for
graphically monitoring a process mean that is better suited for
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informing many engineering decisions than Phase II control
charting. The PD chart approach is based on a rather general
model (observations = Markov mean + iid errors) and allows
one to chart a number of relevant quantities derived from the
posterior distributions of the mean (µt | xt) or the future data (xt+k

| xt), such as credible regions for the mean, posterior quantiles
for future data, the predicted fraction of future data that will fall
outside of specifications, etc.

One attractive feature of PD charts is that a target value and
process specification limits can be included naturally, allowing
one to assess statistical significance and practical significance
in a cohesive manner, using the same chart. By comparing the
posteriors of µt | xt and xt+k | xt to a target value and specification
limits, one can assess whether there is statistically significant
evidence that the mean differs substantially from the target and
also assess the impact of this on the fraction of production that
will fall outside of specifications.

We have advocated numerical integration, rather than closed-
form analytical expressions, to update the posteriors. This allows
one to choose a completely general Markov model for µt and a
completely general distribution for εt, although we have focused
on normally distributed εt. Requiring closed-form expressions
largely limits one to joint Gaussian distributions. Among other
detrimental side effects, this would preclude a RJ model, which
is a very attractive one in the context of monitoring a process
mean and is perhaps essential for quickly tracking large mean
shifts. Resorting to numerical integration provides the flexibility
to choose a model such as the marginalized RJ model, which
we have demonstrated is quite effective at tracking both large
and small shifts.

The flexibility afforded by numerical integration opens up a
number of potentially useful avenues that we think warrant fur-
ther research. One is treatment of a more general error distribu-
tion h(•). For highly-skewed error distributions, a PD chart that
assumes a Gaussian h(•) would likely produce biased posterior
distributions. In addition, the use of a heavy-tailed h(•) would
likely provide some level of robustness to occasional outliers,
but likely at the expense of lessening the chance of immediate
detection of large jumps in the mean. Although the approach
presented for updating the posteriors can be used directly with a
general h(•) with no increase in computational complexity, the
primary difficulty may lie in estimating a nonparametric h(•)
from a set of Phase I data.

A second interesting avenue is adaptation of the PD chart
for use in the standard Phase II control charting paradigm of
signaling an alarm when a mean shift is detected. Perhaps the
most common implicitly assumed model in the standard Phase
II paradigm is that µt is constant until it experiences a jump (of
known or unknown size) at some random time, after which it
remains constant at the new value. There are many variations of
this that could be represented by the Markov mean model with
appropriate choice for p(• | •). It is possible that with certain
choice of p(• | •) and of the rule for signaling (based on some
characteristic of gµ

t |t (•)), the resulting chart could be effective
in the standard Phase II control charting paradigm.

A third potentially fruitful avenue is extending the PD chart
for use in detecting patterned mean shifts in the standard Phase II
control charting paradigm. Certain patterned mean shifts, such
as a ramp or a sinusoid, can be represented as a Markov process

with a two-dimensional state space. It is conceptually straight-
forward to extend Equations (3) and (4) from a one-dimensional
to a two-dimensional state space. However, the computational
expense of numerical integration may be prohibitive in the two-
dimensional case. For these and other potential extensions to
more complex situations (including tracking other parameters,
in addition to the mean), sequential Monte Carlo methods for
nonlinear Bayesian filtering (Doucet, Godsill, Andrieu 2000;
Doucet and Johansen 2011) may be quite useful.

SUPPLEMENTARY MATERIALS

Source Code: This Supplementary Materials file contains Mat-
lab source code for implementing the PD charts in this article.
Code for three different routines are included: (1) for calculat-
ing the posterior distributions for the marginalized RJ model;
(2) for calculating the posterior distributions for the RJ+RW
model; and (3) for plotting the posterior distributions that
were calculated using one of the other two routines.

Robustness Discussion: This Supplementary Materials file pro-
vides some additional discussion on the robustness of the PD
chart tracking performance with respect to choice of hyper-
parameters {(αj, ηj): j = 1,2, . . . , J}.
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