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Residual-based control charts are popular methods for statistical process control of autocorrelated 

processes. To implement these methods, a time series model of the process is required. The model must 

be estimated from data, in practice, and model estimation errors can cause the actual in-control average 
run length to differ substantially from the desired value. This article develops a method for designing 
residual-based exponentially weighted moving average (EWMA) charts under consideration of the uncer 

tainty in the estimated model parameters. The resulting EWMA control limits are widened by an amount 

that depends on a number of factors, including the level of model uncertainty. 
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1. INTRODUCTION 

Statistical process control (SPC) is widely used to monitor 

and improve quality in industrial processes. Traditional SPC 

techniques are based on the assumption that process data are 

independent. Significant advances in measurement and data 

collection technology?particularly in the area of in-process 

sensing?have created the potential for much more frequent 

inspection. As a result, autocorrelated data are now common 

(Montgomery and Woodall 1997). The run-length properties of 

traditional SPC methods like cumulative sum (CUSUM) and X 

charts are strongly affected by data autocorrelation, and the in 

control average run length (ARL) can be much shorter than in 

tended if the autocorrelation is positive (Johnson and Bagshaw 

1974; Vasilopoulos and Stamboulis 1978). Consequently, there 

has been considerable research in recent years on designing 
SPC procedures suitable for autocorrelated processes (see, e.g., 

Montgomery and Woodall 1997; Lu and Reynolds 1999; and 

the references therein). 
The most widely investigated methods for SPC of auto 

correlated processes are residual-based control charts (e.g., 
Alwan and Roberts 1988; Apley and Shi 1999; Berthouex, 

Hunter, and Pallesen 1978; English, Krishnamurthi, and Sas 

tri 1991; Lin and Adams 1996; Lu and Reynolds 1999; Mont 

gomery and Mastrangelo 1991; Runger, Willemain, and Prabhu 

1995; Superville and Adams 1994; Vander Wiel 1996; Wardell, 

Moskowitz, and Plante 1994). One usually assumes that the 

process data xt (t is a time index) follow an autoregressive mov 

ing average (ARMA) model with AR order p and MA order q, 
denoted by ARMA(p, q). Using standard time series notation 

(see Box, Jenkins, and Reinsel 1994) with the backward shift 

operator B defined such that Bxt = xt-\, an ARMA model can 

be written as 

Xt=*W)a" 
(1) 

where 0(_5) = 1 -0i_9-02#2-OqW, <_>(?) = 1 -<?i_9 

02^2-(frpB?, and at is an independently identically dis 

tributed (iid), O-mean sequence of random shocks with vari 

ance a];. It is assumed that the in-control process mean has 

been subtracted, so that xt is O-mean until a shift occurs. For 

notational convenience, the results in this article are derived for 

ARMA processes, although a straightforward extension to au 

toregressive integrated moving average (ARIMA) processes is 

discussed in Section 2. 

The basic idea behind residual-based charts is to directly 
monitor the residuals (the one-step-ahead prediction errors) 

generated via et = O"1^)^^)**- From (1), et is exactly the 

iid sequence at after any initial transients have died out. Thus 

traditional Shewhart, CUSUM, and exponentially weighted 

moving average (EWMA) control charts can be applied to 

the uncorrelated residuals with well-understood in-control run 

length properties. In practice, however, the model parameters 

{0i : i = 
1,2,...,/?}, {Oi : / = 1,2,..., q], and o% must always 

be estimated from process data. Using the 
""" 

symbol to denote 

estimates of the parameters and the resulting ARMA polynomi 
als, the residuals generated via the estimated model behave as 

the ARMA(p + q,p + q) process, 

*(fl) *(B)0(B) 
et =-xt =-au (2) 

0(B) 0(_3)*(_5) 
and are no longer iid. 

Suppose that an EWMA of the form yt = (1 
? 

k)yt-\ + \eu 
for some EWMA parameter 0 < X < 1, is applied to the residu 

als. Defining v = 1 - ?, the EWMA statistic, yu can be written 

as the ARMA(p + q + 1, p + q) process 

1-v (1 
- 

v)Q(B)?(B) 
yt =--et =-n-at. (3) 1 - vB (l 

- vB)?(B)<t>(B) 
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Figure 1. Sample EWMA Chart tor an In-Control AR(1) Process With </> j Underestimated. The desired in-control ARL is 500, whereas the actual 
ARL is much lower due to frequent false alarms. 

For a specified k, the typical EWMA design procedure is to set 

the upper control limit (UCL) and lower control limit (LCL) on 

yt at (Lu and Reynolds 1999) 

{LCL, UCL} = 
?L?y, (4) 

where ay 
= oa(\ 

- 
v)1/2(l + v)~1/2 is the steady-state standard 

deviation of yt assuming that the estimated model is perfect 

(Montgomery 2001), and the constant L is chosen to provide 
a desired in-control ARL. Lucas and Saccucci (1990) devel 

oped tables for monitoring iid data that give the values of L 

that result in several in-control ARL values for various choices 

of k. To improve the sensitivity to mean shifts that occur when 

the control chart is first initiated, time-varying control limits 

that gradually widen to the steady-state limits (4) can also be 

used (Montgomery 2001). This article considers only constant 

steady-state control limits. 

Let 
Oy 

denote the actual variance of the EWMA statistic (3), 
which is a function of the true parameters and their estimates. 

Because the EWMA is a weighted average of the past residuals, 
residual autocorrelation due to estimation errors can have a sub 

stantial effect on oy and the resulting in-control ARL (Adams 
and Tseng 1998; Apley and Shi 1999; Lu and Reynolds 1999). 
If the true and estimated parameters are such that the resid 

ual autocorrelation is positive, then ay generally will be larger 
than ay, the in-control ARL will be shorter than intended, and 

the control chart may be plagued with frequent false alarms. 

To illustrate the effects of modeling errors, suppose that xt is 

an AR(1) process with <?)\ = .9 and a2 = 1.0 and that the esti 

mated parameters are $\ 
= .85 and o% 

= 1.0. Using an EWMA 

with k = . 1 and treating the estimates as perfect, the assumed 

EWMA variance is a2 = a2(l 
- 

v)(l + v)"1 
= .053. For a 

desired in-control ARL of 500, L = 2.814 (Lucas and Saccucci 

1990) and the control limits ?Loy 
= ?.647 would be used. Us 

ing (3) and any of the methods for calculating the variance of 

an ARMA process discussed by Box et al. (1994), however, it 

can be shown that the actual EWMA variance is Oy 
= .084? 

roughly 60% larger than the assumed variance. If the control 

limits based on the assumed variance are used, then Monte 

Carlo simulation (refer to Sec. 4 for details) reveals that the 

actual in-control ARL is approximately 165, which is substan 

tially shorter than intended. Figure 1, which shows the EWMA 

statistic for 500 simulated observations with the ?.647 control 

limits, illustrates the frequent false alarms that result in this sit 

uation. 

To account for uncertainty in the estimated parameters and 

guard against a situation in which the in-control ARL is sub 

stantially shorter than desired, a reasonable precaution is to use 

control limits that are wider than those used when the model is 

assumed to be perfect. This article presents a method for widen 

ing the EWMA control limits based on the following "worst 

case" design approach. For a specified k and a given set of 

ARMA parameter estimates, (3) implies that oy is a function 

of the true, unknown parameters. Considering the uncertainty 
in the true parameters, Section 2 derives an approximate up 

per one-sided 1 ? a confidence interval for cry for some user 

selected 0 < a < 1. Let dy^a denote the upper boundary of this 

confidence interval, which can be viewed as a worst-case (max 

imum) value for the true EWMA standard deviation. 

The proposed method is to monitor the EWMA statistic (3), 
but to use the worst-case control limits, 

{LCL,UCL} = 
?La3;,a, (5) 

instead of the standard control limits (4). Section 3 discusses 

guidelines for selecting the design parameters L, ?, and a. L can 

be chosen so that the worst-case ARL (roughly, the in-control 

ARL that would result if ay assumed its worst-case value) ap 

proximately equals some desired ARL value specified by the 

user. Widened control limits will inevitably increase the out-of 

control ARL for any size mean shift and reduce the power of 

the chart. Section 4 discusses this drawback of the worst-case 
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design approach and illustrates this with examples. It also dis 
cusses sample size requirements and compares the EWMA with 
a Shewhart individual chart, which is less powerful for small to 

moderate mean shifts but more robust to modeling errors. 

2. THE WORST-CASE EWMA VARIANCE 

The EWMA statistic (3) can be rewritten as 

00 

y, = (1 
- 

v)G(B)a, = (1 
- 

v) ? GjaH, 
;=0 

where 

4>(W) =? 
(1 

- 
vB)&(B)$(B) pQ 

and {Gj :j = 0,1,2,...} are the impulse response coefficients 

of the ARMA(/? + q + \,p + q) transfer function G(B). For a 

fixed set of ARMA parameters and their estimates, the EWMA 

variance is (Box et al. 1994) 
00 

a2=cr2(l-v)2?G;2. (6) 

j=0 

Define the ARMA parameter vector y = [<?>\ 02 ... 
<t>p 0\ O2 . 

Oq cx2]T, and let y denote a point estimate. To find an approxi 
mate confidence interval for oy, we use a first-order Taylor ap 

proximation of the ratio a2 ?a2 about y = y. If the parameter 
error vector is defined as y = y 

? 
y, then the first-order Taylor 

approximation is 

a2/o2^l-h\Ty, (7) 

where 

I" -2v -2v2 -2vP 2v 2v2 2v* _ _2~f 

"~L^(v) 4>(v) 
" 

?(v) 0?? 0(v) 
"' 

?(v) 
~~?a 

J' 
with 4>(v) = $>(B)\b=:v = 1 ? 

0iv 
? 

02V2-0pV^, and 

0(v) = 0(5)|5==v = 1 - 0\v 
- 

02v2-9qv*. The Taylor 

approximation (7) is derived in Appendix A for the special case 

of a first-order ARMA process and was given by Apley (2003) 
for the more general ARMA(/?, q) case. 

Let N denote the number of observations in the sample used 

to estimate the ARMA parameters. For most estimation meth 

ods, the distribution of y for large N is approximately multi 

variate normal with mean 0 and some covariance matrix Zy 
that is inversely proportional to N (Box et al. 1994; Brock 

well and Davis 1991). Commercial statistical software pack 

ages for ARMA modeling often provide an estimate ?y of the 

covariance along with the parameter estimates. Alternatively, 
the method outlined in Appendix B may be used to calculate 

Y y when only the parameter estimates are available. Closed 

form expressions for ?y 
are also provided in Appendix B for 

the special case of first-order ARMA processes. 

Using the multivariate normal approximation to the distrib 

ution of y, the ratio 
cry/?y 

in (7) is approximately normally 

distributed with mean 1 and variance YTY,y V. Thus, for any 

probability 0 < a < 1, 

1 -a = 
Pr[a2/^2 

< 1 +za(V%V)1/2] 
= 

Pr[oy 
< 

oy{\ 4- z?(V%\)1/2}l/2], 

where Za denotes the upper a percentile of the standard normal 

distribution. Substituting ?y and 

r_2y -2v2 -2vP 2v 2v2 2v* A ~1T 
V= ------------a"2 

L4>(v) O(v) 0(v) 0(v) 0(v) 0(v) J 
(8) 

for Hy and V leads to the approximate 1 ? a confidence interval 

Oy <<7V,a =?y{l+Za(\T?y\)l/2}l/2 (9) 

for the EWMA standard deviation. After L is selected as de 

scribed in the following section, oy,a can be used in the worst 

case control limits (5). 
The Taylor approximation (7) has an interesting interpreta 

tion when the process is ARMA(1,1). In this case, (7) reduces 

to 

2^2^ 2v(0i-0Q 2v(fl1-fli) ol-ol 
&v = Vv \ 1-;-;-1 y 

y\ l-0iv l-Oiv a2 

The EWMA variance increases (relative to the assumed 

value a2) when 0i is underestimated (4>\ < (?>\) and/or 0\ is 

overestimated (0\ >0\). The reason is that the autocorrelation 

of xt is underestimated in this situation, resulting in residuals 

with positive autocorrelation. When the residuals are positively 
autocorrelated, the variance of their EWMA is larger than if the 

residuals were iid. This was discussed in more detail in Adams 

and Tseng (1998). The foregoing equation also indicates that 

the effects of parameter estimation errors are larger for larger 
values of v. In the limiting case with v = 0 (a Shewhart indi 

vidual chart on the residuals), errors in estimating (pi and 0\ 
have very little effect on the EWMA variance, which is further 

discussed in Section 4.3. 

The confidence interval (9) and the expressions for 3_y in 

Appendix B are also valid for ARIMA(p, l,q) processes of 

the form xt = (1 
- 

B)~l^~l(B)S(B)at. The reason is that 

when estimating the parameters of an ARIMA model, one 

fits an ARMA model to the differenced data (1 
? 

B)xt. Be 

cause the residuals are still generated via (2) with xt replaced 

by the differenced data, the EWMA statistic follows the same 

ARMA(p -I- q + 1, p + q) model (3). The parameter errors thus 

have the exact same effect on the EWMA variance as in the 

ARMA case. 

3. SELECTING THE DESIGN 
PARAMETERS L, ?, AND a 

When designing an EWMA chart for iid data with no consid 

eration of model uncertainty, the parameters ? and L are often 

jointly selected to minimize the out-of-control ARL for a speci 
fied mean shift, while ensuring the in-control ARL equals some 

desired value. Lucas and Saccucci (1990) provided tables for 

selecting values of X and L that are optimal in this sense. For a 

residual-based EWMA with autocorrelated data, optimally se 

lecting X and L is complicated even when perfect models are as 

sumed. The optimal X and L depend on many factors, including 
the desired in-control ARL, the specified mean shift of interest, 
and the ARMA parameters. For first-order AR models, Lu and 

Reynolds (1999) provided tables for selecting the optimal X and 

L for the specific cases of <j>\ = .4 and (f>\ = .8 with a desired in 

control ARL of 370. When considering model uncertainty as in 
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this article, jointly selecting k and L to satisfy some optimality 
criterion is prohibitively complex. 

In light of this, it is recommended that one first select k 

as if the estimated model were perfect. The rule of thumb 

.05 < k < .5 (Lu and Reynolds 1999), where it is understood 

that smaller k values result in better detection of small mean 

shifts, but slower detection of large shifts, may be used. (For 
more detailed guidelines, see the thorough discussions in Lucas 

and Saccucci 1990 and Lu and Reynolds 1999). 
After specifying k, suppose that the tables of Lucas and Sac 

cucci (1990) are used to select L based on some desired in 

control ARL (denoted ARLd). If used in the standard EWMA 

control limits (4), this value of L would provide the desired 

ARL when there is no model uncertainty and the residuals are 

iid. With model uncertainty considered, using the same value of 

L in the worst-case EWMA control limits (5) is recommended. 

If the EWMA standard deviation oy happens to coincide with 

its worst-case value oy,a, then the control limits (5) will provide 
an in-control ARL that approximately equals the desired value 

ARLd. The examples in Section 4 indicate that this choice of L 

also results in an appealing Bayesian interpretation of the con 

trol chart: If an appropriate posterior distribution for the ARMA 

parameters is considered, then the posterior probability that the 

ARL is less than ARLd is reasonably close to the a value spec 
ified in the confidence interval on oy. 

Using a slightly smaller value of L in the control limits (5) 
also might have been considered for the following reason. 

When there are no modeling errors, and the standard control 

limits (4) are used, the value of L that provides a desired in 

control ARL depends on k. This is primarily because the au 

tocorrelation of the EWMA statistic yt depends on k. As k de 

creases, the autocorrelation of yt increases, and the in-control 

ARL increases for any fixed L. Consequently, as k decreases, 
smaller values of L will provide the same in-control ARL. 

When modeling errors are present, the errors also affect the au 

tocorrelation of yt. When the true parameters are such that ay 
coincides with oyf0C, the autocorrelation of the residuals gen 

erally will be positive, and the autocorrelation of yt will be 

larger than when there are no modeling errors. Consequently, 
a slightly smaller value of L may provide the desired ARL 

when oy coincides with oyt0l. On the other hand, a first-order 

Taylor approximation of the EWMA variance was also used in 

developing the expression for oy,a. This approximation tends 

to underestimate the EWMA variance, and the resulting oytCt is 

slightly smaller than what would result from a more exact con 

fidence interval. Because the control limits (5) are the product 
of L and Oy>a, the effects of the Taylor approximation are par 

tially compensated by taking L directly from the tables Lucas 

and Saccucci (1990) as recommended, as opposed to using a 

slightly smaller value. 

Note that the ARLd that one specifies in the design proce 
dure should be viewed as a worst-case ARL that results when 

the EWMA variance equals its worst-case value (within the 

1 ? a confidence interval). If the true ARMA parameters and 

the EWMA variance are close to their estimates, the ARL will 

generally be larger than ARLd. To avoid overly conservative 

control limits, this should be kept in mind when selecting the 

remaining design parameter a. A small value such as a = .01 

may widen the control limits to an extent that makes it difficult 

to detect most mean shifts of interest. This trade-off in using 
the worst-case control limits is discussed in more detail in Sec 

tions 4.1 and 4.2, with a recommended range of .1 < a < .3. 

The design procedure is illustrated with the Series A data 

from Box et al. (1994), which are _V = 197 concentration mea 

surements from a chemical process. Box et al. (1994) found that 
an ARMA(1,1) model fit the data well, and the estimated pa 
rameters were (omitting their subscripts) 4> = 87, 0 = .48, and 

<t2 = .098. Using (B.4), the estimated parameter covariance is 

"2.75 3.64 0 

3.64 8.71 0 

0 0 .098 
v x 10~3. 

If X = . 1 and ARLd = 500 are selected, then the tables of Lucas 

and Saccucci (1990) indicate that L = 2.814 should be used. 

Because oy 
= aa{\ 

- 
v)l/2(l + v)"1/2 = .0718, the standard 

control limits (4) become ?Loy 
= ?.202. If a = .1 is also se 

lected, then (8) and (9) result in V = [-8.29 3.17 -10.20]r, 
and Oy^a 

= .0849. The worst-case control limits (5) are, there 

fore, ?Loy^ 
= ?.239, which are 18% wider than the standard 

control limits. 

Figure 2 shows an EWMA control chart applied to 500 sim 

ulated observations from the process when the true parameters 
assume the values (?> = .917, 9 = .491, and a2 = .102. These 

parameter values were chosen because the resulting Taylor ap 

proximation (7) of a2 (with V replaced by V) equals the worst 

case value 
Gya. 

One can also show that of all parameter com 

binations that result in a Taylor approximation equal to cr*a, 

these values have the highest likelihood (minimize yT?y y). 
Both the standard and the worst-case control limits are shown 

in Figure 2. Because the mean of xt was held at 0 throughout 
the simulation, all cases where the EWMA statistic fell outside 

the control limits were false alarms. The standard control lim 

its resulted in false alarms around timesteps 50, 275, and 425, 
whereas the worst-case control limits eliminated the first two of 

these. In the following section, Monte Carlo simulation is used 

to provide a more comprehensive analysis of the control chart 

performance. 

Figure 3, which is similar to Figure 2 except that the true 

ARMA parameters were chosen to coincide with their esti 

mates, illustrates one drawback of using the worst-case control 

limits: If the true parameters happen to fall sufficiently close 

to their estimates, then the standard control limits provide the 

desired in-control ARL. The worst-case control limits are un 

necessarily wide in this case, which inevitably decreases the 

power of the control chart. This is an inherent consequence 
of the worst-case design approach, which is intended to guard 

against the situation where the true parameters are not "suffi 

ciently" close to their estimates. To mitigate this drawback, us 

ing both sets of control limits for the EWMA chart is recom 

mended. An observation falling outside the worst-case control 

limits provides strong evidence that the process has changed. 
An observation falling within the worst-case control limits but 

outside the standard limits should be interpreted with more cau 

tion; it could mean that either the process has changed or that 

the ARMA parameters differ from their estimates. Section 4 

provides a detailed discussion of the trade-offs involved in the 

worst-case design approach. 
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500 

Figure 2. Example EWMA Chart With Standard and Worst-Case Control Limits, When <ry Coincides With Its Worst-Case Value oy,a. 

4. DISCUSSION 

Monte Carlo simulation is used throughout this section to in 

vestigate the ARL performance of EWMA charts with standard 

and worst-case control limits when the parameters differ from 

their estimates. For each simulation (with a specified combina 

tion of true and estimated parameters), 10,000 replicates were 

used. Thus the standard deviation of the ARL estimation er 

ror was approximately 1% of the true ARL. For each replicate, 
the tff's were generated as an independent sequence of random 

numbers from the normal distribution with mean 0 and variance 

a2. The jc/'s were then generated from (1); the residuals, from 

(2). The first ?f (where K is some number that depends on 0, 0, 

0, and 0) residuals were discarded, so it can be assumed that 

the remaining sequence of residuals has reached steady state. 

The EWMA for the remaining residuals was calculated via (3), 

with yo initialized at 0. A signal occurred when yt fell outside 
the control limits. The same procedure was followed for inves 

tigating an out-of-control ARL, except that a mean shift was 

added to xt at timestep K + 1. 

4.1 Bayesian Interpretations 

Consider a Bayesian alternative to the worst-case design ap 

proach, where some posterior distribution for y is assumed 

(given the data from which the parameters are estimated) and 
the control limits are selected to provide a desired average ARL 

with respect to the posterior distribution of y. This section dis 
cusses why designing the control chart based on an average 

ARL would actually lead to control limits that are narrower 

than the standard limits. In addition, a Bayesian analysis is con 

ducted to investigate the posterior probability that the ARL is 

0.3 
i-,-,-,-,-1 

Worst-case UCL = 
.239_ 

02 
Standard UCL = 

.202_, 

02 Standard LCL 
J>.202_f_ 

Worst-case LCL = 
-.239_ 

_i_i_i_i_ 

0 100 200 300 400 500 
t 

Figure 3. Example EWMA Chart With Standard and Worst-Case Control Limits, When ay Coincides With ?y. 
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0.85 j 0.9 0.95 

Figure 4. ARL Contours as a Function of </> and 0 for the ARMA(1,1) Example, (a), (c), and (e) ln-control ARLs for the standard EWMA, 
worst-case EWMA, and Shewhart charts, (b), (d), and (f) Out-of-control ARLs for the three charts when the mean shift magnitude is 3cra. 

less than ARLd when the worst-case control limits are used. 

For the examples considered here, this probability is reasonably 
close to the value of a specified in the confidence interval. For 

analysis purposes, it is assumed the posterior distribution of y is 

approximately multivariate normal with mean y and covariance 

T?y (see App. B). This can be viewed as an asymptotic approx 
imation when the prior distribution of y is noninformative. 

Reconsider the ARMA (1,1) example introduced in Sec 

tion 3, where the estimated parameters were 0 = .87, 0 = .48, 
and a2 = .098. For simplicity, uncertainty in a2 is neglected 

by modifying the earlier expression for ?y 
so that its lower 

right element (i.e., the variance of o2) is 0. This results in 

ay%OL 
= .0842 and worst-case control limits ?Loy,a 

= 
?.237, 

which are only slightly narrower than when we also considered 

uncertainty in a2. Figure 4 shows contour plots of the ARL as 

a function of 0 and 0 for o2 = o2. Panel (a) is the in-control 

ARL contours for the standard EWMA with control limits of 

?.202. The parameter estimates are indicated by "*". Because 

the EWMA was designed with ARLd = 500, the ARL = 500 

contour passes through the parameter estimates. Numerical in 
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tegration of the ARL with respect to the assumed posterior den 

sity of y gives a rough approximation of 730 for the average 
ARL of the EWMA chart with standard control limits. Some 

what surprisingly, this is larger than the desired ARL of 500 

that results when the model is perfect. It may be concluded that 
an average ARL of 500 could be achieved with control limits 
even narrower than the standard control limits. 

The reason the average ARL is larger than 500 is that the 

ARL is a highly skewed function of 0 and 0, as can be seen in 

Figure 4(a). For 0 < 0 and 0 > 0, the ARL increases dramat 

ically. The average ARL is misleading, however, because the 

ARL may decrease to unacceptably small values for 0 > 0 and 

0 < 0. Numerical integration (of the posterior density over the 

ARL < 250 region) also reveals that there is a .24 probability 
that the ARL is less than 250, which is only half the desired 

ARL. Likewise, there is a .11 probability that the ARL is less 

than 150. 

Figure 4(c) shows analogous in-control ARL contours for the 

EWMA chart with worst-case control limits of ?.237. With 

the worst-case control limits, the probability that the ARL is 

less than the desired value 500 is approximately .13, reason 

ably close to the a = . 1 value selected when the chart was de 

signed. Moreover, the probability that the ARL is less than 250 

is only .05, compared with the .24 probability found with the 

standard control limits. The worst-case control limits clearly 

provide adequate protection against an unacceptably short in 

control ARL. An additional benefit is that when the parameters 
coincide with their estimates, the in-control ARL will be even 

larger than the desired value. From Figure 4(c), the in-control 

ARL in this case is roughly 2,000, compared with an ARL of 

500 with the standard control limits. The obvious disadvantage 
of widening the control limits, which is discussed in the follow 

ing section, is the resulting decrease in the power of the chart 

for detecting mean shifts. 

4.2 In-Control Versus Out-of-Control ARL Trade-off 

For the same ARMA(1,1) example introduced in Section 3 

and continued in Section 4.1, Figures 4(b) and 4(d) show the 

out-of-control ARL contours for a mean shift with magnitude 
of 3oa. Figure 4(b) is for the standard control limits of ?.202, 
and Figure 4(d) is for the worst-case control limits of ?.237. 

The worst-case control limits increase the out-of-control ARL 

by approximately 60% for most combinations of 0 and 6. Note 

that even with the standard control limits, the ARL is approx 

imately 8.0 when the ARMA parameters equal their estimates, 
which may seem large for a mean shift of 3oa. After the initial 

occurrence of the mean shift, however, the mean of the resid 

uals rapidly approaches a steady-state value of only J5oa. Su 

perville and Adams (1994) and Apley and Shi (1999) discussed 

this "forecast recovery" phenomenon in detail. Table 1 presents 

the out-of-control ARL values for other mean shifts for the spe 
cific case where the ARMA parameters coincide with their esti 

mates. It also provides results for the Shewhart individual chart, 
discussed in Section 4.3. Widening the control limits clearly has 
a negative impact on the out-of-control ARL, particularly for 
small mean shifts. For a mean shift of size aa, which results in a 

steady-state residual mean of only .25aa, widening the control 

limits causes the out-of-control ARL to increase from 101 to 

247. This is understandable, given that the in-control ARL (the 
ARL for a mean shift of size 0) increases from 500 to 2,020. 
The ARL increase is more moderate, but still substantial, for 

larger mean shifts. 

As another example, with consideration of uncertainty in oa, 

suppose that the parameters of an AR(1) process are estimated 

using N = 400 observations and that the estimates are 0 = .5 

and a2 = 1.0. If X = .1 and a desired ARLd = 500 are cho 

sen, again L = 2.814. Because oy =<rfl(l 
- 

v)1/2(l + v)~1//2 
= 

.2294, the standard control limits (4) are ?Lay 
= ?.646. Us 

ing (B.5), the parameter covariance is 

i _,_Jl-?2 ? 
"I-i1"88 ?lxl0-3 

**-n[ 0 2?a4J-L 0 5.0jxl? 
If a = .1 is selected, then (8) and (9) result in V = 

[?3.27 
? 

1.00]r, and ayiU 
= .2516. The worst-case control lim 

its (5) are, therefore, ?L<xv,a 
= ?.708, which are roughly 10% 

wider than the standard control limits. 

Figure 5 shows results for the AR(1) example that are anal 

ogous to Figure 4. Figures 5(a) and 5(c) show the in-control 

ARL contours as functions of (/> and a% for the standard and 

worst-case EWMA control limits. As in the Bayesian analysis 
of the previous section, suppose that the posterior distribution 

of y is 
approximately 

multivariate normal with mean y and co 

variance ?y. With the worst-case control limits, the probability 
that the ARL is less than 500 is roughly .105, almost identical 

to the selected value of a. 

Figures 5(b) and 5(d) show the corresponding out-of-control 

ARL contours for a mean shift of magnitude 2 oa. Table 2 gives 
the out-of-control ARL values for other mean shifts when the 

true parameters coincide with their estimates. Because the con 

trol limits are widened by a lesser extent than in the previous 

ARMA(1,1) example, the worst-case design results in a much 

less severe increase in the out-of-control ARLs. For mean shifts 

with magnitude 2 oa or larger, the out-of-control ARLs increase 

by roughly 15%, whereas the in-control ARL doubles. 

Given the decreased power of the chart that results from 

widening the control limits, to what extent (or even whether) 

they should be widened to account for model uncertainty would 

ideally depend on the costs associated with false alarms and the 

costs of failing to detect out-of-control conditions, as well as 

on the a priori probability of occurrence of out-of-control con 

ditions. If the costs of false alarms are small, then it may not be 

Table 1. ARL Values for Various Size Mean Shifts for the ARMA(1, 1) Example When the 
ARMA Parameters Coincide With Their Estimates 

Mean shift magnitude (in units of(ja) 

Chart Control limits 0 12 3 4 5 

EWMA(? = .1) .202 (standard) 500 101 23.8 8.11 3.54 2.22 

EWMA(? = .1) .237 (worst-case) 2,020 247 43.3 13.3 5.29 2.89 
Shewhart .967 (standard) 500 366 168 49.1 7.83 1.38 
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0.44 0.46 0.48 0.5 , 0.52 0.54 0.56 0.44 0.46 0.48 0.5 ,0.52 0.54 0.56 

Figure 5. ARL Contours as a Function of<j> ando% for the AR(1) Example, (a), (c), and (e) In-control ARLs for the standard EWMA, worst-case 

EWMA, and Shewhart charts, (b), (d), and (f) Out-of-control ARLs for the three charts when the mean shift magnitude is2aa. 

desirable to widen the control limits. In the author's experience, 
however, the costs of frequent false alarms are often quite high 
when the hidden costs of unnecessary shutdowns, production 

delays, and operators who begin to ignore all alarms, includ 

ing those that signal real out-of-control conditions, are consid 

ered. To lessen the severity of the trade-offs in using worst 

case control limits, the best solution (when possible) would be 

to collect a larger sample of data to reduce the parameter un 

certainty. Guidelines for sample size selection are discussed in 

Section 4.4. 

Table 2. ARL Values for Various Size Mean Shifts for the AR(1) Example When the ARMA 
Parameters Coincide With Their Estimates 

_Mean 
shift magnitude (in units of a 

a)_ 

Chart Control limits 0 12 3 4 5 

EWMA(? = .1) .646 (standard) 500 30.0 9.37 4.96 3.24 2.34 
EWMA (? = .1) .708 (worst-case) 1,080 39.6 10.9 5.66 3.68 2.65 
Shewhart 3.09 (standard) 500 199 48.1 10.6 2.32 1.10 
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4.3 Shewhart Individual Charts Versus EWMA Charts 

Figures 4(e) and 4(f) show the in-control and out-of-control 

ARL contours for a Shewhart individual chart on the residuals 

in the previous ARMA(1,1) example. Standard control limits 

of ?3.09aa = ?.967 were used, which provide an in-control 

ARL of 500 when there are no parameter errors. The mean shift 

magnitude for Figure 4(f) was 3 aa, the same as for Figures 4(b) 
and 4(d). The ARL of the Shewhart chart is much less depen 
dent on (?> and 0 than the ARL of an EWMA chart with small k, 

because, unlike an EWMA, the Shewhart chart considers only 
individual residuals and does not take a weighted average of 

successive residuals. Consequently, residual autocorrelation has 

little effect on the Shewhart ARL if no supplementary run rules 
are used. Although an increase in the variance of the residuals 

will affect the Shewhart ARL, o2 was assumed to equal a2 in 

this example, and small variations in (f> and 0 do not increase the 

residual variance substantially. Figures 5(e) and 5(f) show anal 

ogous results for a Shewhart chart applied to the residuals in 

the AR(1) example, where ?3.09<j? control limits were again 
used. In this example, variations in o2 were also considered. 

Figure 5(e) shows that the in-control ARL depends predomi 

nantly on cr2 and is nearly independent of 0 over the range of 

values considered. 

Given the relative insensitivity of the Shewhart individual 

chart with respect to parameter errors, an alternative to using 
an EWMA with worst-case control limits is to simply use a 

Shewhart chart with standard control limits. Because the out 

of-control ARL for the EWMA is increased when its control 

limits are widened, one may speculate that the Shewhart chart 

with standard control limits could provide better detection of 

mean shifts. Tables 1 and 2 indicate that this is true only for 

large mean shifts in the examples considered. Even when the 

worst-case control limits are used, the EWMA still has sub 

stantially shorter out-of-control ARLs than the Shewhart chart 

for small to moderate mean shifts. Table 1 shows that for the 

ARMA(1,1) example, the Shewhart chart does not surpass the 

worst-case EWMA in power until the mean shift is between 

4aa and 5aa. This is the same level of mean shift at which the 

Shewhart chart surpasses the EWMA with standard control lim 

its. Table 2 demonstrates similar results for the AR(1) example. 
Moreover, comparing Figures 4(e) and 5(e) with Figures 4(c) 
and 5(c), the EWMA with worst-case control limits provides 
the additional benefit of substantially larger in-control ARLs 

for most parameter combinations. 

4.4 Sample Size Requirements 

In light of the decreased power that results from widening 
the EWMA control limits, one may wish to collect a suffi 

ciently large sample of data to ensure that ay# is close to ay, 
in which case the worst-case control limits will be close to the 

standard control limits. It is difficult to provide general guide 
lines for sample size requirements without some knowledge of 

the ARMA parameters, because oy,a depends heavily on the 

parameter estimates. If initial estimates have been obtaineded 

from an initial set of data, however, this may be used to deter 

mine how much (or whether) additional data are needed. While 

waiting for the additional data to be collected, it may be desir 

able to use both the worst-case and the standard control limits 

together (refer to Fig. 2) as temporary control limits until more 

accurate parameter estimates and new control limits can be cal 

culated. 

Suppose that initial parameter estimates have been obtained 

and k and a have been selected. A reasonable strategy is to 

select the size N of the additional data sample sufficiently large 
so that the resulting percentage difference between oy,a and oy 
is less than some small value 8 (e.g., 8 = .05). From (9), the 

requirement becomes 

a-^ 
= 

[l+Za(\T?yvf2]l/2<l+8. 
Define T.y 

= 
NT,y. As shown in Appendix B, Hy is a function 

of the parameter estimates but is otherwise independent of N. If 

this is substituted into the foregoing inequality, then the sample 
size requirement reduces to 

z2yT~? y 

K>t??W>- 
(10> 

To provide some insight into typical sample size require 
ments, Figure 6 shows contour plots of the required N from (10) 
as a function of 0 and 0 for an ARMA(1,1) process with four 

different values of k. The contour plots are for the specific case 

of 8 = .05 and a = .20. Because neither Ey nor V depends on 

8 and a, results for other 8 and a are obtained by multiplying 
the values of N in Figure 6 by z^2.0522.052z2<r2(2 + 8)~2 = 

.0148z2<5~2(2 + 8)~~2. If, for example, a more conservative 
a = . 1 and the same <5 are consider, then the required sample 
sizes are multiplied by 2.32. For a less conservative a = .3 and 

the same 8, the same sizes are multiplied by .387. For small 8, 

(10) indicates that the required N is approximately inversely 

proportional to 82. 
In the ARMA(1,1) example of Section 3 with 0 = .87, 

0 = .48, and N = 197, the values k = .1 and a = .1 were se 

lected. This resulted in worst-case control limits that were 18% 

wider than the standard control limits. Suppose that one wanted 

to collect a sample sufficiently large that the worst-case control 

limits were only 5% wider than the standard limits. From Fig 
ure 6, a sample size of approximately 1,270 would be required 
when a = .2. For a = . 1, the required sample size is 2.32 times 

larger, orN = 2,940. 
Note that the ridges in Figure 6 are at 0 = 1 ? k and 0 = 

1 ? k. For a specified k, the EWMA chart is least robust when 

the parameter estimates coincide with 1 ? k. This does not im 

ply that one should avoid choosing a value of k that coincides 

with 1 ? 
0 or 1 ? 

0, however. One may show that for any fixed 

positive values of 0 and 9, (10) increases monotonically as k 

decreases. 

Figure 7 shows contour plots of the required sample size as 

a function of 0 and k for an AR(1) process with 8 = .05 and 

a = .20. Results for other 8 and a are again obtained by mul 

tiplying the values of N in Figure 7 by .0148z2<$~2(2 + 8)~2. 

Figure 7 also applies to first-order MA and IMA processes if 0 
is replaced by 0, because of the symmetry of T,y and V with 

respect to the AR and MA parameters. Figures 6 and 7 indicate 

that very large samples are often required to ensure that oy,a 
is no more than 5% larger than oy. Even for an AR(1) process 

with a = .20, sample sizes close to 1,000 are required for the 

typical values ?^.l and 0 > .5. 
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Figure 6. Contours of the Required Sample Size N with 8 = .05 and a = .20 for an ARMA(1, 1) Process With X = .05 (a), 
. 10 (b), .20 (c) and 

.40 (d). For other values of 8 anda, multiply the contours by .0148 z?8~2(2 + 8)~2. 

1 i-1-1-1-1-1-1-1-1-r 

Figure 7. Contours of the Required Sample Size N with 8 = .05 and 
a = .20 for an AR(1) process. For other values of 8 anda, multiply the 

contours by .0148z?8~2(2 + 8)~2. The results for first-order MA and 

IMA processes are identical if(?> is replaced by 6. 

For iid processes, many authors have investigated the ef 
fects of estimating the process mean and variance on control 
chart performance. For example, Ghosh, Reynolds, and Van Hui 

(1981), Quesenberry (1993), and Del Castillo (1996), studied 
the effects of estimating the mean and/or variance on Shewhart 

type charts. Bagshaw and Johnson (1975) studied the effects 
of estimating the variance on the ARL of a CUSUM chart. 

Jones, Champ, and Rigdon (2001) studied the effects of esti 

mating the mean and variance on EWMA charts. A common 

conclusion is that sample sizes considerably larger than what 
one might expect are often needed when parameters are esti 

mated. Jones et al. (2001) found that the required sample size 

depends strongly on the EWMA parameter k, which is consis 
tent with the foregoing results. 

5. CONCLUSIONS 

When designing a residual-based EWMA, a natural measure 
is to use wider control limits to account for uncertainty in the es 
timated parameters. The design approach of this article widens 
the control limits by an amount commensurate with the worst 
case scenario, in which the ARMA parameters are such that 
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the EWMA variance equals the maximum value within an ap 

propriate confidence interval. Assuming that an estimate of the 

parameter covariance matrix is available or can be calculated 
as described in Appendix B, the worst-case design approach 
involves little additional complexity relative to the standard de 

sign approach. 
In light of the drawback of widening the control limits? 

decreased chart power?one may question whether residual 

based control charts should be used. The impact of parame 
ter uncertainty, however, is not unique to residual-based charts. 

Suppose that a CUSUM, X, or EWMA chart is to be applied 

directly to an autocorrelated process xt. The methods presented 

by Johnson and Bagshaw (1974), Vasilopoulos and Stamboulis 

(1978), and Zhang (1998) rely on an accurate ARMA process 
model (or, equivalently, the autocorrelation function of xt) just 
as residual-based control charts do. The difference is that in 

residual-based control charts, the charted statistic depends on 

the model, whereas the control limits do not. In control charts 

applied directly to xt, the control limits depend on the model, 
whereas the charted statistic does not. If the estimated model 

is inaccurate in either case, then the control limits will fail to 

provide the desired ARL. 

Noting the lack of robustness of residual-based charts to pa 
rameter errors, Adams and Tseng (1998) recommended the al 

ternative approach of removing (when possible) the autocorre 

lation by either removing the source or using feedback-control 

techniques. Effective removal of autocorrelation via feedback 

control also requires an accurate process model, however. With 

modeling errors, the feedback-controlled process output would 

have autocorrelation similar to the ARMA residuals. A con 

trol chart on the output would most likely be just as affected 

by modeling errors as a control chart on the residuals. An in 

vestigation of the relative robustness of different control charts 

(on the residuals, on xt, and on the feedback-controlled output) 
would shed light on whether there are any significant differ 

ences in their sensitivity to modeling errors. 
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APPENDIX A: DERIVATION OF THE FIRST-ORDER 
TAYLOR APPROXIMATION (7) FOR 

ARMA(1,1) PROCESSES 

The first-order Taylor approximation of the ratio 

a* 
a02(l-v2)fr2 

a2 a2 ?-^ J 
y a 

y=o 

is sought, where (6) has been used for or2. The approximation 
is 

r = 
r\y=v + 

8r 

+ 
dr 

3?f 

y=y OU 

(?2 

(?-e) 
y=y 

iK-??) 
y=y 

= 
1+2(1-v2)?(g,.?)| * 

;--0V Wt\y=y 7=0 

A ~2 

(A.1) 

For ARMA(1,1) processes, G(B) can be expressed via its par 
tial fraction expansion 

G(B) = (l-0g)(l -6>_?) 

(l-v_?)(l-o_0(l-</_?) 

(v-<t>)(v-9) 1 
+ 

(<p-(t>)(<i>-e) i 

(v 
- 

6?)(v 
- 

0) (1 
- 

vB) (</, 
_ 

?)(0 
_ 

6?) (1 
- 

0B) 

+ (0_-0)(0-0) 
1 

(0 
- 

v)(9 
- 

(?>) (I 
- 

OB) 

which can be verified by straightforward but tedious algebra. 
For notational convenience, the subscripts on 

<f> 
and 6 have 

been omitted. Because (1 
? 

cB)~x = 
Ylj^o0'^ 

f?r any con" 

stant c with magnitude less than unity, the impulse response 
coefficients are 

(v-4>){v-e) j t (<t>-$)(<p-9)^ 
Gj =-x-vJ H-?<p> 

iv-e){v-4>) {<t>-v){4>-e) 

H-x-x-fr. 

Hence 

(e-v)(?-4>) 

Gj\y=y=vK 

-E^l4+> 
y=y J=o 

1 

V ?0 V ? 
0 

1 1 

;=0 y=y j=0 

V ? 
(?> \\ 

? 
4>V 1 ? V2 

? V 

(l-</>v)(l-v2)' 

-0 v-0 

1 1 

and 

E^ 
7=0 

v-0[l-v2 l-0v 
V 

(l-0v)(l-v2)' 

00 - 

f-' 1-V2 
?=y 7=0 

Substituting these into (A.l) gives (7). 
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APPENDIX B: CALCULATING THE PARAMETER 
COVARIANCE X, 

Assume that the ARMA parameters are estimated using a 

method based on minimizing the sum of the squares of the 
model residuals, such as the nonlinear least squares or approx 
imate maximum likelihood methods described by Box et al. 

(1994). For sample size N sufficiently large, the parameter co 

variance matrix is (Box et al. 1994) 

L,y 
- 

0T 

0 

2AT l?i 

i 

? 

-l 

0T 

0 

2ai 
(B.l) 

where 0 denotes a column vector of p + q Os, and J,n denotes 

the covariance of r? = [0i 02 ... 
<?>p 0\ 02 0q]T. The matrix 

?w is defined as the covariance matrix of the random vector 

w, = 
[ut ut-\ ... 

?i-p+i vt vt-\ ... 
vt-q+\]T, 

where ut and vt 

are defined via ut 
? 

<t>~l(B)at and vt = 
?S~l(B)at. 

To calculate Xw, rewrite ut = 
J2hLo8<t>Jat-j and Vt = 

- 
Yj^o8ojaH> 

wnere the ?0,/s and go/s are the impulse re 

sponse coefficients of <t>~l(B) and S~l(B). Note that the im 

pulse response coefficients can be calculated recursively for 

j= 1,2,..., via 

g4>J 
= 

0i?0J-i + 02?0?-2 + * ' + 4>p84>J-p> (B-2) 

and 

gej 
= 

Oigej-i + 02gej-2 + + 0qg9J-q (B.3) 

with gjj 
= 

g6>j 
= 0 for./ < 0 and ?<?,o 

= ?0,0 = 1. If the matrix 

H= 

" 
?0,0 0 

<?0,i ?0,0 

?0,2 ?0,1 

?0,p ?0,p-l 

?0,p+l ?0,p 

0 

0 

?0,0 

?0,1 

?0,2 

-go,o 

-?0,2 

'>e,q 

0 

-?0,0 

-?0,1 

-8e,q 

0 

0 

~8e,o 

-?0,1 

-?0,2 

is constructed from the impulse response coefficients, then 

Iw = cr2HrH results, and crfa~l 
= [HrH]-1 can be substi 

tuted in (B.l). Because the impulse response coefficients decay 

exponentially for stable, invertible ARMA processes, the num 

ber of rows needed in H will generally be reasonable. 

Because the true ARMA parameters are unknown, their esti 

mates must be substituted into (B.1)-(B.3) to calculate the esti 

mate Y,y for use in the confidence interval (9). Box et al. (1994) 
showed that for first-order AR, MA, and ARMA processes, the 

estimated covariance of r? reduces to the following: 

ARMA(1,1): I,= 
(1-00) 

N(4>-?)2 

Rl-02)(l-00) (1-02)(1-02)1 
L(l-02)(l-02) (1-02)(1-00)J' 

(B.4) 

AR(1): If 
= 1-02 

N 
(B.5) 

and 

MA(1): ?f = I 
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