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Summary

A general multistage (stepwise) procedure is proposed for dealing with arbitrary gatekeeping problems
including parallel and serial gatekeeping. The procedure is very simple to implement since it does not
require the application of the closed testing principle and the consequent need to test all nonempty
intersections of hypotheses. It is based on the idea of carrying forward the Type I error rate for any
rejected hypotheses to test hypotheses in the next ordered family. This requires the use of a so-called
separable multiple test procedure (MTP) in the earlier family. The Bonferroni MTP is separable, but
other standard MTPs such as Holm, Hochberg, Fallback and Dunnett are not. Their truncated versions
are proposed which are separable and more powerful than the Bonferroni MTP. The proposed proce-
dure is illustrated by a clinical trial example.

Key words: Bonferroni test; Closed procedure; Fallback test; Hochberg test; Holm test;
Multiple comparisons; Stepwise procedure; Truncated tests.

1 Introduction

Gatekeeping procedures have become popular in recent years as they provide a convenient way to
handle logical relationships between multiple hierarchical objectives that clinical trials are often re-
quired to address. Questions concerning different objectives are formulated as hypotheses and the
hierarchy of relationships is modeled by dividing them into ordered families. Suppose there are n � 2
hypotheses divided into m � 2 ordered families, Fi (1 � i � m). Let Fi ¼ fHi1; . . . ;Hinig, wherePm

i¼1 ni ¼ n. Generally, familywise error rate (FWER) control at a designated level a is desired for
the family F ¼

[m

i¼1
Fi of all n hypotheses.

Westfall and Krishen (2001) proposed procedures for the serial gatekeeping problem in which the
hypotheses in Fiþ1 are tested if and only if (iff) all hypotheses in Fi are rejected (1 � i � m� 1).
Dmitrienko, Offen and Westfall (2003) proposed procedures for the parallel gatekeeping problem in
which the hypotheses in Fiþ1 are tested iff at least one hypothesis in Fi is rejected (1 � i � m� 1). In
both cases, if the specified rejection criterion for Fi is not satisfied then all hypotheses in Fj for j > i
are automatically accepted. Dmitrienko, Wiens, Tamhane and Wang (2007) proposed tree gatekeeping
procedures which unify and generalize these two types of procedures (see also Dmitrienko, Tamhane,
Liu and Wiens, 2008); the present paper does not cover general tree gatekeeping procedures. Dmitrien-
ko and Tamhane (2007) have given a review of these recent developments.

A serial gatekeeping procedure tests the families Fi (1 � i � m) sequentially, each at an a-level,
using any suitable MTP (Maurer, Hothorn and Lehmacher, 1995). Testing stops as soon as at least one
hypothesis in a family under test is not rejected. Thus these procedures are naturally stepwise and do
not require further elucidation.
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To construct a parallel gatekeeping procedure, Dmitrienko et al. (2003) employed the closure principle
of Marcus, Peritz and Gabriel (1976). This involves testing up to 2n � 1 intersection hypotheses. Each
intersection hypothesis is tested using a weighted test where weights are assigned to the hypotheses in the
intersection to take into account their a priori order. Dmitrienko et al. (2003) used the weighted Bonferroni
MTP for testing intersection hypotheses. They gave a decision matrix approach to systematize the calcula-
tion of multiplicity adjusted p-values for all hypotheses from which acceptance/rejection decisions on
them can be readily made. The main difficulty of this algorithm is its lack of transparency –– not so much
its computational complexity –– which makes its decisions not easily interpretable to clinicians.

Dmitrienko, Tamhane, Wang and Chen (2006) showed that the closed parallel gatekeeping proce-
dure described above simplifies to a stepwise procedure. In this procedure the first m� 1 families are
tested using the Bonferroni MTP which tests Fi at level ria (1 � i � m� 1). The family Fm is tested
at level rma using the Holm (1979) MTP. Here ri is the so-called rejection gain factor for family Fi.
If the hypotheses are equally weighted in each family then ri is given by

r1 ¼ 1; ri ¼
Yi�1

j¼1

rj

nj

� �
; ð2 � i � mÞ ; ð1Þ

where rj is the number of rejected hypotheses in Fj; thus ri is the product of the proportions of rejected
hypotheses in F1 through Fi�1. Note that rejection criterion becomes more stringent in later families if
fewer hypotheses are rejected in earlier families. If no hypotheses are rejected in some family Fi, rj ¼ 0 for
all j > i. Therefore, all hypotheses in Fj for j > i are automatically accepted, thus satisfying the parallel
gatekeeping condition. On the other hand, if all hypotheses are rejected in F1 through Fi�1, then ri ¼ 1 and
thus full a level is used to test Fi. In general, if the procedure does not use the fraction of a assigned to a
particular hypothesis (i.e., this hypothesis is not rejected), this fraction is lost (i.e., it cannot be carried over
to the next family). We refer to this as the “use it or lose it” principle.

Guilbaud (2007) showed that a stepwise parallel gatekeeping procedure can be directly constructed
without appeal to the closure principle. For m ¼ 2 families, this procedure uses the Bonferroni MTP
for F1 and any FWER-controlling MTP (not necessarily the Holm MTP) for F2. For more than two
families, he applied this two-stage procedure recursively.

In this paper we capture the essence of the Guilbaud procedure which allows us to generalize it to
develop more powerful procedures. The key property of the Bonferroni MTP used to test F1 is that it
does not exhaust the designated Type I error rate, a, unless all hypotheses are true, and thus one can
carry over the remaining a to test F2. In fact, the actual FWER of the Bonferroni MTP is less than or
equal to a when all hypotheses are true, but the upper bound a is used to construct the procedure. We
show that any MTP that does not exhaust a unless all hypotheses are true can be used in place of the
Bonferroni MTP. Such an MTP is said to be separable.

We introduce the separability condition in Section 2. A general class of MTPs that satisfies the separabil-
ity condition and are more powerful than the Bonferroni MTP is introduced in Section 3. Next we present a
general multistage gatekeeping procedure in Section 4 in which any separable MTP can be used. Calcula-
tion of the adjusted p-values for the proposed procedure is discussed in Section 5. The paper concludes with
an illustrative clinical trial example in Section 6. The proof of the main result is given in the Appendix.

2 Separability Condition

To introduce the separability condition, it is convenient to consider the case of a single family of hypoth-
eses, F ¼ fH1; . . . ;Hng. For any I � N ¼ f1; 2; . . . ; ng, the error rate function of an MTP is defined as

eðIÞ ¼ sup
HI

P
[
i2I

ðReject HiÞ
����HI

( )
;

where “Reject Hi‘‘ represents the event (the subset of the sample space) that corresponds to rejection
of Hi and the supremum of the probability is taken over the entire null space defined by
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HI ¼
\

i2I
Hi, including any false hypotheses Hj, j 62 I. Thus eðIÞ is the maximum probability of

making at least one Type I error in the subfamily fHi; i 2 Ig.
Generally, a closed form and readily computable upper bound e*ðIÞ on eðIÞ is used to determine the

critical values of an MTP since an exact expression for eðIÞ is difficult to derive if the test statistics are
correlated; if the correlations are unknown, which is often the case, then eðIÞ cannot be computed at all.
For example, for the Bonferroni MTP, which rejects any Hi if pi � a=n, the upper bound used is

e*ðIÞ ¼ ajIj=n ; ð2Þ
where jIj is the cardinality of set I. For any MTP, if an exact computable expression for eðIÞ is
available then we set e*ðIÞ ¼ eðIÞ; otherwise we will treat e*ðIÞ itself as the error rate function and
state all the formulas in terms of e*ðIÞ.

The e*ðIÞ function of an MTP will be used in the construction of the multistage parallel gatekeeping
procedure defined in Section 4 as follows. Consider an MTP operating at an a-level and let A denote the
index set of accepted hypotheses. The part of a that is “unused” and hence can be carried over to test the
hypotheses in the next family is a� e*ðAÞ or the corresponding fraction is 1� e*ðAÞ=a. Obviously, this
fraction equals 1 if A ¼ ; (i.e., if all hypotheses are rejected). To satisfy the parallel gatekeeping condi-
tion we require this fraction to be 0 if A ¼ N (i.e., if all hypotheses are accepted). In addition, this
fraction must be positive, and hence e*ðIÞ must be strictly less than a, if only a subset of hypotheses are
accepted. We refer to this condition as the separability condition, and state it as

e*ðIÞ < a for all I � N : ð3Þ
An a-level MTP that satisfies the separability condition is said to be separable. The Bonferroni MTP
can be readily seen to be separable since e*ðIÞ ¼ ajIj=n < a if I � N.

Commonly, we want the fraction of a carried over to the next stage, namely 1� e*ðAÞ=a, to be a
monotone increasing function of the index set R ¼ NnA of rejected hypotheses. Therefore we require

e*ð;Þ ¼ 0; e*ðIÞ � e*ðJÞ if I � J and e*ðNÞ ¼ a : ð4Þ
It is readily seen that the Bonferroni MTP satisfies these conditions. Also, it is worth noting that, if
e*ðIÞ does not satisfy the monotonicity condition, this condition can always be enforced. For any
separable MTP, one can define the upper bound as e*ðIÞ ¼ maxI0 � I e*ðI0Þ; then it follows that e*ðIÞ
will meet the separability and monotonicity conditions.

3 Truncated MTPs

Many standard MTPs such as the Holm (1979) and Hochberg (1988) do not satisfy the separability
condition (3). In order that they do, while maintaining their power advantage over the Bonferroni
MTP, we modify them by taking a convex combination of their critical constants with the Bonferroni
critical constants. We refer to the resulting modified MTPs as truncated MTPs.

Consider again a single family of hypotheses, F ¼ fH1; . . . ;Hng, with p-values, p1; . . . ; pn. For conve-
nience, we will assume that the hypotheses are equally weighted. The same principle can be applied to
construct truncated MTPs for weighted hypotheses. All MTPs are assumed to be of nominal a level.

3.1 Holm step-down MTP

In the Holm (1979) MTP the p-values are first ordered, pð1Þ � � � � � pðnÞ. Let Hð1Þ; . . . ;HðnÞ be the
corresponding hypotheses. At the first stage, Hð1Þ is tested by comparing pð1Þ with a=n. If pð1Þ > a=n,
then all hypotheses are accepted and testing stops. Otherwise Hð1Þ is rejected and one proceeds to test
Hð2Þ by comparing pð2Þ with a=ðn� 1Þ. In general, HðiÞ; . . . ;HðnÞ are accepted and testing stops if

pðiÞ >
a

n� iþ 1
; ð5Þ

otherwise HðiÞ is rejected and testing continues with Hðiþ1Þ.
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The Holm MTP incorrectly rejects any true hypothesis with probability a and hence is not separ-
able. To see this, consider the problem of testing Hi : mi ¼ 0 versus H0i : mi > 0, ð1 � i � nÞ. Suppose
that mj ¼ 0 for some j and mi !1, i 6¼ j. Then pi ! 0 for i 6¼ j and pj will be the largest p-value.
Therefore, pj will be compared with a and Hj will be rejected with probability a.

To make the Holm MTP separable, we truncate its critical constants by taking their convex combi-
nation with the Bonferroni MTP constants as follows. In (5), for specified g (0 � g < 1), called the
truncation fraction, we replace the critical constant for comparing pðiÞ with

wia ¼
g

n� iþ 1
þ 1� g

n

� �
a : ð6Þ

We refer to this procedure as the truncated Holm MTP. The power of this MTP is strictly increasing
in g. For g ¼ 0 and g ¼ 1, this MTP simplifies to the Bonferroni MTP and the Holm MTP, respec-
tively.

Note that the truncated Holm MTP is a step-down shortcut to a closed procedure that tests any
intersection hypothesis HI ¼

\
i2I

Hi using the weighted Bonferroni MTP with weights wiðIÞ and
finds it significant if pi � wiðIÞa for at least one i 2 I, where

wiðIÞ ¼
g

jIj þ
1� g

n
:

Recalling that a closed procedure rejects HI iff all HJ for J � I are significant, an upper bound on the
error rate function of the truncated Holm MTP is given by

e*ðIÞ ¼

P
i2I

wiðIÞa ¼ ½gþ ð1� gÞ jIj=n	 a if jIj > 0;

0 if jIj ¼ 0:

(
ð7Þ

Therefore for any I � N and g 2 ½0; 1Þ,

e*ðIÞ < ½gþ ð1� gÞ	 a ¼ a :

Hence the truncated Holm MTP is separable. Note that the e
ðIÞ function of the truncated Holm MTP
satisfies (4).

3.2 Hochberg step-up MTP

The Hochberg MTP uses the same Holm critical constants (5) but tests the hypotheses in a step-up
manner (it begins with the hypotheses corresponding to the least significant p-value). The Hochberg
MTP is more powerful than the Holm MTP. However, the Hochberg MTP (as well as the Hommel
MTP mentioned in the sequel) requires independence among the p-values since it is based on the
Simes (1986) test, which assumesindependence; Sarkar and Chang (1997) have shown that the inde-
pendence assumption can be relaxed to the positive dependence assumption. The error rate function of
the Hochberg MTP also equals a under the same configuration for which the error rate function of the
Holm MTP equals a, namely one hypothesis is true and the others are infinitely false. Hence the
Hochberg MTP is not separable.

A truncated Hochberg MTP uses the same critical constants (6) as does the truncated Holm MTP, but is
more powerful than the latter. At the first stage, this MTP rejects all hypotheses and stops testing if

pðnÞ � wna ¼ gþ ð1� gÞ
n

� �
a ;

otherwise it accepts HðnÞ and goes on to test Hðn�1Þ. In general, having accepted HðnÞ; . . . ;Hðiþ1Þ, it
rejects HðiÞ; . . . ;Hð1Þ and stops testing if pðiÞ � wia where wi is defined in (6); otherwise, it accepts
HðiÞ and goes on to test Hði�1Þ.
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As is well-known, the Hochberg (1988) MTP is a conservative shortcut to the closed procedure in
which each intersection hypothesis HI ¼

\
i2I

Hi is tested using the Simes (1986) test. Similarly, the
truncated Hochberg MTP is a conservative shortcut to the closed procedure based on the truncated
Simes test in which any intersection hypothesis HI ¼

\
i2I

Hi is rejected if

pðiÞðIÞ �
g

jIj � iþ 1
þ 1� g

n

� �
a for at least one i 2 I ;

where pðiÞðIÞ is the ith ordered p-value in the index set I and g 2 ½0; 1Þ. Therefore an upper bound on
the error rate function of the truncated Hochberg MTP is given by

e*ðIÞ ¼ 1� P pðiÞðIÞ >
g

jIj � iþ 1
þ 1� g

n

� �
a for all i 2 I

� �

if jIj > 0 and e*ðIÞ ¼ 0 if jIj ¼ 0. Using the Simes (1986) identity, it is readily seen that e*ðIÞ < a
for I � N and g 2 ½0; 1Þ. Therefore, the truncated Hochberg MTP is separable. In general, e*ðIÞ above
does not satisfy the monotonicity condition (4); therefore the latter may need to be enforced as ex-
plained following its statement. For independent p-values, e*ðIÞ can be computed using the recursive
formula given in the following result due to Sen (1999).

Pr�position 3.1 Let Uð1Þ < . . . < UðkÞ denote the order statistics of k � 1 i.i.d. observations from a
uniform ð0; 1Þ distribution. For any 0 < a1 < . . . < ak < 1,

Pða1; . . . ; akÞ ¼ PðUðiÞ > ai for all i ¼ 1; . . . ; kÞ ¼ k!Hkð1Þ ;
where

HiðuÞ ¼
Ðu
ai

Hi�1ðvÞ dv; i ¼ 1; . . . ; k and H0ðuÞ ¼ Iðu � a1Þ ;

and Ið�Þ is an indicator function.

3.3 Fallback MTP

Wiens (2003) proposed a step-down MTP in which the hypotheses are a priori ordered (in contrast to
the Holm MTP which orders the hypotheses according to their observed p-values). The total a is
allocated to the n ordered hypotheses as a1; . . . ;an such that

Xn

i¼1
ai ¼ a. For simplicity, we shall

restrict to the equal allocation case: ai ¼ a=n (1 � i � n). The MTP begins by testing H1 at level
a=n; more generally, it tests a hypothesis Hi at level ði� tÞ a=n, where t is the index of the last
accepted hypothesis (t ¼ 0 if none of the previous hypotheses is accepted). This MTP also follows the
“use it or lose it” principle so that the ai’s for the rejected hypotheses in the sequence are carried
forward to test the later hypotheses.

This fallback MTP is not separable. Suppose, for example, that H1; . . . ;Hn�1 are infinitely false and
Hn is true, so that p1; . . . ; pn�1 ! 0 and pn is compared with a. Then the probability of rejecting Hn

is a.
The truncated fallback MTP tests Hi at level

wiðtÞa ¼
gði� tÞ

n
þ 1� g

n

� �
a ;

where 0 � g < 1 and t is the index of the last accepted hypothesis (t ¼ 0 if none of the previous
hypotheses is accepted).

Extending the arguments in the proof of Theorem 1 of Wiens and Dmitrienko (2005), it can be
shown that this MTP is a shortcut to a closed procedure which rejects any intersection hypothesis
HI ¼

\
i2I

Hi if pi � wiðtIÞa for at least one i 2 I, where tI is the largest index in I that is smaller
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than i if i is not the smallest index in I and tI ¼ 0 if i is the smallest index in I. Therefore, using the
closure principle and the Bonferroni inequality, an upper bound on the error rate function of the
truncated fallback MTP is given by

e*ðIÞ ¼
P
i2I

wiðtIÞa if jIj > 0

0 if jIj ¼ 0
:

(

Note that e*ðIÞ < a for any I � N, and hence the truncated fallback MTP is separable if g 2 ½0; 1Þ.
Also, e*ðIÞ satisfies the conditions (4).

3.4 Dunnett step-down MTP

The Dunnett (1955) MTP can be thought of as a parametric version of the Bonferroni MTP and the
step-down Dunnett MTP (Marcus, Peritz and Gabriel, 1976) is analogous to the Holm MTP. The step-
down Dunnett MTP does not satisfy the separability condition because it incorrectly rejects any true
hypothesis with probability a. The truncated Dunnett MTP is defined as a convex combination of the
regular and step-down Dunnett MTPs with 0 � g < 1. Let t1; . . . ; tn be the test statistics associated
with H1; . . . ;Hn. Let tð1Þ > . . . > tðnÞ be the ordered test statistics and Hð1Þ; . . . ;HðnÞ denote the corre-
sponding null hypotheses. Further, let T1; . . . ; Tn denote the random variables corresponding to the
observed statistics t1; . . . ; tn and assume that they follow a multivariate t-distribution under the global
null hypothesis.

For any I � N, let cðIÞ be the critical value for the maximum test statistic associated with Hi, i 2 I,
such that

P max
i2I

Ti > cðIÞ j HI ¼
\
i2I

Hi

� �
¼ a :

The computation of these critical values can be performed using the algorithm for calculating multi-
variate t probabilities due to Genz and Bretz (2002).

For any i ¼ 1; . . . ; n, let IðiÞ ¼ fðiÞ; . . . ; ðnÞg. The truncated Dunnett MTP begins with the hypoth-
esis, Hð1Þ, corresponding to the most significant t-statistic, tð1Þ. This hypothesis is rejected if
tð1Þ > cðIð1ÞÞ and is accepted otherwise. If Hð1Þ is rejected, the next hypothesis in the sequence, Hð2Þ, is
tested. In general, the MTP rejects HðjÞ if

tðiÞ > ð1� gÞcðIð1ÞÞ þ gcðIðiÞÞ for all i ¼ 1; . . . ; j :

Otherwise, HðjÞ; . . . ;HðnÞ are accepted and testing stops. The truncated Dunnett MTP simplifies to the
regular Dunnett MTP if g ¼ 0 and to the step-down Dunnett MTP if g ¼ 1.

The computation of the error rate function for the truncated Dunnett MTP can be performed by
using its closed representation. This MTP is equivalent to a closed testing procedure that rejects the
intersection hypothesis

\
i2I

Hi, I � N, if

max
i2I

Ti > ð1� gÞ cðNÞ þ gcðIÞ :

Therefore, using the same argument as used for the Holm MTP, an upper bound on the error rate
function of the truncated Dunnett MTP is given by

e*ðIÞ ¼
Pðmax

i2I
Ti > ð1� gÞ cðNÞ þ gcðIÞÞ if jIj > 0

0 if jIj ¼ 0
:

�

It is easy to see that the truncated Dunnett MTP satisfies the separability condition for any I � N if
0 � g < 1. However, the upper bound e*ðIÞ on its error rate function may not satisfy the monotonicity
condition (4), in which case the latter may need to be enforced as explained following its statement.
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4 General Multistage Gatekeeping Procedure

To explain the key principles underlying the general multistage gatekeeping procedure, we will begin
with a simple case of two families of hypotheses:

F1 ¼ fH11; . . . ;H1n1g and F2 ¼ fH21; . . . ;H2n2g :
The hypotheses in F1 and F2 are tested using a two-stage gatekeeping procedure described below.

Let a denote the FWER for this procedure. Further Let N1 ¼ f1; . . . ; n1g and A1 � N1 be the index
set corresponding to the accepted hypotheses in F1. The hypotheses in F1 are tested at the a1 ¼ a
level using an MTP that controls the FWER within F1 and meets the separability condition introduced
in Section 2. Next, F2 is tested using an MTP that controls the FWER within F2 at level

a2 ¼ a1 � e1*ðA1Þ
and e1*ðIÞ is an appropriate upper bound on the error rate function of the MTP used at the first stage
of this procedure. The second-stage MTP is assumed to be a-consistent (Roth, 1999), i.e., if it rejects
H2j, j ¼ 1; . . . ; n2, at the a level, it will also reject it at the a0 level, where a < a0. Note that all
popular MTPs are a-consistent.

Proposition 4.1 The two-stage gatekeeping procedure controls the FWER at the a level.

Proof Given in the Appendix.

The simple two-stage procedure provides useful insights into the nature of gatekeeping inferences.
Since e1*ð;Þ ¼ 0, the second-stage MTP is carried out at the a level if all hypotheses are rejected in
F1. Secondly, due to the monotonicity of the e1*ðIÞ function (4), a greater fraction of a will be propa-
gated to F2 (and consequently more hypotheses could be rejected in F2) if more hypotheses are
rejected in F1. Finally, since a2 ¼ 0 if A1 ¼ N1 according to (4), this procedure satisfies the parallel
gatekeeping condition.

It is important to note that any FWER-controlling MTP can be used at the second stage of the two-
stage gatekeeping procedure. Therefore one can construct gatekeeping procedures with an arbitrary num-
ber of stages by a recursive application of the two-stage procedure. This approach is conceptually similar
to the recursive algorithm for constructing combination tests proposed by Brannath, Posch and Bauer
(2002) in the context of multistage adaptive clinical trials. Since a serial gatekeeper can be expressed as a
series of single-hypothesis families, multistage gatekeeping procedures obtained via the recursive algo-
rithm can have a very flexible structure that combines serial gatekeepers and parallel gatekeepers.

To define the multistage gatekeeping procedure, consider m � 2 families, Fi ¼ fHi1; . . . ;Hinig
(1 � i � m). Let Ni ¼ f1; . . . ; nig and Ai � Ni be the index set corresponding to the accepted hypoth-
eses in Fi. The algorithm for applying the procedure is as follows.

� Start Initialize a1 ¼ a.
� Stages 1 through m� 1 Test Fi at an ai level using any separable MTP with a suitable upper

bound on the error rate function e
i ðIÞ. Set

aiþ1 ¼ ai � ei*ðAiÞ :
� If Ai ¼ Ni, i.e., no hypotheses are rejected in Fi, then ei*ðAiÞ ¼ ai and hence aiþ1 ¼ 0. In that

case, stop testing and accept all hypotheses in Fiþ1; . . . ;Fm; otherwise go to the next stage.
� Stage m Use any FWER-controlling MTP to test Fm at an am level.

The following remarks may be noted regarding this procedure.
1. If all hypotheses are rejected at the i-th stage (1 � i � m� 1), then Ai ¼ ; and aiþ1 ¼ ai. Thus

full ai is carried over to the next stage.
2. At the final stage, any FWER controlling MTP may be used, but a truncated MTP should not be

used since it is less powerful than its untruncated version.
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If the Bonferroni MTP is used at the first m� 1 stages, it follows from (2) that

ai ¼ ai�1 � ei�1* ðAi�1Þ ¼ 1� ai�1

ni�1

� �� �
ai�1 ¼

ri�1

ni�1

� �
ai�1 ;

where ai�1 and ri�1 are the numbers of accepted and rejected hypotheses, respectively, in Fi�1. Apply-
ing this formula recursively we get the formula (1) for the rejection gain factor ri.

5 Adjusted p-values

Multiple tests are commonly performed by computing adjusted p-values. Given the stepwise structure
of multistage gatekeeping procedures, it seems natural to derive a stepwise algorithm for computing
adjusted p-values for the hypotheses in Fi ¼ fHi1; . . . ;Hinig (1 � i � m). Theoretically, this algorithm
can be constructed along the lines of Guilbaud (2007). However, the algorithm quickly becomes quite
complex due to a large number of minimization/maximization steps.

An alternative approach can be based on the general definition of adjusted p-values: The multipli-
city adjusted p-value for a given null hypothesis and an MTP is defined as the significance level at
which the procedure rejects the hypothesis (Westfall and Young, 1993). Using this definition, it is easy
to compute adjusted p-values associated with the gatekeeping procedure by looping through a discrete
grid of significance levels. Thus let a ¼ k=K, ð0 < k < KÞ for some sufficiently large value of K. The
adjusted p-value, ~ppij, for hypotheses Hij is the smallest a (corresponding to the smallest k) for which
Hij is rejected. Since multistage gatekeeping procedures have a simple stepwise form, this direct-calcu-
lation algorithm is quite fast even when the number of hypotheses is large.

An SAS code for computing multiplicity-adjusted p-values can be downloaded from the BioPharm-
Net web site: http://www.biopharmnet.com/code. A special case of this code is used in the following
clinical trial example.

6 Example

To illustrate the implementation of multistage gatekeeping procedures, consider the Type II diabetes
clinical trial example from Dmitrienko, Wiens, Tamhane and Wang (2007, Section 6). The trial com-
pares three doses (Low (L), Medium (M) and High (H)) of an experimental drug versus placebo
(Plac) with respect to a primary endpoint (Endpoint P, Hemoglobin A1c) and two key secondary end-
points (Endpoint S1, Fasting serum glucose; Endpoint S2, HDL cholesterol). Nine null hypotheses in
this trial are grouped into three families:

� F1 includes the H-Plac (H11), M-Plac (H12) and L-Plac (H13) comparisons for Endpoint P.
� F2 includes the H-Plac (H21), M-Plac (H22) and L-Plac (H23) comparisons for Endpoint S1.
� F3 includes the H-Plac (H31), M-Plac (H32) and L-Plac (H33) comparisons for Endpoint S2.

The hypotheses are equally weighted within each family and the FWER is set at 0.05. Raw
p-values for the nine hypotheses computed from two-sample t tests are displayed in Table 1.

It is worth noting that the original example in Dmitrienko, Wiens, Tamhane and Wang (2007) included
logical restrictions, i.e., the dose-placebo tests for Endpoint S1 were restricted to the doses at which there
was a significant treatment effect for Endpoint P and, similarly, the dose-placebo tests for Endpoint S2
were restricted to the doses at which Endpoints P and S1 demonstrated a significant effect. For the sake
of simplicity, we will not impose these restrictions in this example and F1 will be assumed to serve as a
parallel gatekeeper for F2, which, in turn, will serve as a parallel gatekeeper for F3.

The nine hypotheses in the Type II diabetes clinical trial will be tested using the three-stage gate-
keeping procedure defined below. The procedure uses the truncated Holm MTP with g ¼ 0, 0:25 and
0:5 at the first two stages (F1 and F2) and the Holm MTP at the last stage (F3).
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To illustrate the process of applying a multistage gatekeeping procedure, consider the case when
g ¼ 0:25. Using the algorithm defined in Section 4, initialize a1 ¼ 0:05. The hypotheses in F1 are
tested using the truncated Holm MTP at the overall a1 level. All hypotheses are rejected at this level
and, by the definition of the error rate function for this truncated MTP,

a2 ¼ a1 ¼ 0:05 :

The three tests in F2 are also carried out using the truncated Holm MTP at the overall a2 level. Two
hypotheses (H21 and H23) are rejected in F2 and thus the significance level in F3 is given by

a3 ¼ a2 � gþ ð1� gÞ jA2j
n

a2 ¼ a2 � gþ ð1� gÞ
3

� �
a2 ¼ 0:025 ;

��

where jA2j ¼ 1 and n ¼ 3. Two hypotheses (H31 and H32) are rejected by the regular Holm MTP at
this level in F3.

The multiplicity-adjusted p-values associated with the three-stage gatekeeping procedure are com-
puted using the direct-calculation algorithm defined in Section 5 with K ¼ 10 000. The adjusted
p-values are given in Table 1. In general, the power of the truncated Holm MTP in F1 is an increasing
function of g but the power of the MTPs in F2 and F3 may not be a monotone function of the trunca-
tion fraction. In this particular case, the number of rejected hypotheses in these two families increases
with g because more hypotheses are found false in F1 and, as a consequence, a larger fraction of a is
carried over to F2 and F3. To see this, compare the columns for g ¼ 0 and g ¼ 0:25 andthe columns
for g ¼ 0:25 and g ¼ 0:5 in Table 1.

As an aside note, it is instructive to compare the unrestricted gatekeeping procedure defined above
to the procedure with logical restrictions considered in Dmitrienko, Wiens, Tamhane and Wang
(2007). In this example, the logical restriction condition is not met for g ¼ 0:25 since H22 is not
rejected but H32 is rejected.

Lastly, note that the truncated Holm MTP with g ¼ 0 is equivalent to the Bonferroni MTP and thus
the three-stage procedure simplifies in this case to the Bonferroni-based parallel gatekeeping proce-
dure. The adjusted p-values for the three-stage procedure with g ¼ 0 are equal to those presented by
Dmitrienko, Wiens, Tamhane and Wang (2007) in Table IV.
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Table 1 Three-stage gatekeeping procedure in the Type II diabetes clinical trial
example. The hypotheses in F1 and F2 are tested using the truncated Holm MTP
with the truncation fraction g and the hypotheses in F3 are tested using the
regular Holm MTP. The asterisk identifies the adjusted p-values that are signifi-
cant at the 0.05 level

Family Null
hypothesis

Raw
p-value

Adjusted p-value

g ¼ 0 g ¼ 0:25 g ¼ 0:5

F1 H11 0:005 0:015* 0:015* 0:015*
H12 0:011 0:033* 0:029* 0:027*
H13 0:018 0:054 0:036* 0:027*

F2 H21 0:009 0:041* 0:036* 0:027*
H22 0:026 0:078 0:052 0:039*
H23 0:013 0:054 0:036* 0:031*

F3 H31 0:010 0:054 0:040* 0:039*
H32 0:006 0:054 0:036* 0:039*
H33 0:051 0:076 0:052 0:051
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7 Conclusions

This paper introduced a general approach to constructing multistage gatekeeping procedures. The re-
sulting procedures are fairly flexible in the sense that one can choose from a broad class of MTPs to
define a test for each individual stage. Among the p-value-based procedures, we recommend using the
truncated Hochberg or Hommel MTPs if the statistics are positively dependent. Otherwise, the trun-
cated Holm procedure can be used. The truncated fallback MTP can be used if the hypotheses within
a family can be naturally ordered. If the normality assumption holds then the truncated Dunnett MTP
should be used.

If a truncated MTP is used at the i-th stage of a multistage gatekeeping procedure, the truncation
fraction g can be thought of as the “weight” of Family Fi relative to the subsequent families. The
choice of g for the truncated Holm MTP was briefly described in Dmitrienko and Tamhane (2007,
Section 4) and similar arguments apply to other truncated MTPs. In particular, the power of the tests
in Fi is an increasing function of g but the relationship between the power of the tests in Fiþ1; . . . ;Fm

and the truncation fraction used in Fi is more complicated. The tests in Fiþ1; . . . ;Fm can gain or lose
power with increasing g depending on the number of true hypotheses in Fiþ1; . . . ;Fm, their weights
and effect sizes for false hypotheses. It is worth noting that for m > 2 families different g’s can be
used at different stages.

Appendix

Proof of Proposition 4.1 Define the following events:

B1 ¼ fOne or more true null hypotheses are rejected in F1g;
B2ðxÞ ¼ fOne or more true null hypotheses are rejected at level x in F2g:

Note that, due to a-consistency of the second-stage MTP, B2ðxÞ � B2ðyÞ if x � y. Further, since the
MTP controls the FWER within F2, PðB2ðxÞÞ � x. Also, let e
1ðIÞ be an upper bound on the error rate
function of the first-stage MTP, I � N1, a2 be the random level at which the second-stage MTP is
carried out within the two-stage procedure and �EE be the complement of the event E.

The FWER of the two-stage gatekeeping procedure can be written as

PðB1 [ B2ða2ÞÞ ¼ PðB1Þ þ Pð �BB1 \ B2ða2ÞÞ :
Let T1 � N1 denote the set of indices corresponding to the true null hypotheses in F1. By the defini-
tion of the error rate function, PðB1Þ � e1*ðT1Þ.

Next consider �BB1 \ B2ða2Þ. Since

�BB1 ¼ fNo true null hypotheses are rejected in F1g ;
we have T1 � A1 and thus, due to the monotonicity condition (4),

a2 ¼ a� e1*ðA1Þ � a� e1*ðT1Þ
when �BB1 is true. Therefore,

�BB1 \ B2ða2Þ � �BB1 \ B2ða� e1*ðT1ÞÞ
and

Pð �BB1 \ B2ða2ÞÞ � Pð �BB1 \ B2ða� e1*ðT1ÞÞ � PðB2ða� e1*ðT1ÞÞ � a� e1*ðT1Þ :
Therefore PðB1 [ B2ða2ÞÞ � e1*ðT1Þ þ a� e1*ðT1Þ ¼ a and thus the two-stage procedure controls the
FWER at the a level. The proof of Proposition 4 is complete.

The asterisk identifies the adjusted p-values that are significant at the 0.05 level.
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